• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Postprocessing system for echo sounder data

    Thumbnail
    View/Open
    JAS000037.pdf (1.719Mb)
    Date
    1991-07
    Author
    Foote, Kenneth G.  Concept link
    Knudsen, Hans Petter  Concept link
    Korneliussen, Rolf J.  Concept link
    Nordbø, Per Erik  Concept link
    Røang, Kjell  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5646
    As published
    https://doi.org/10.1121/1.401261
    DOI
    10.1121/1.401261
    Keyword
     Data processing; Remote sensing; Marine surveys; Acoustic equipment; Echoes; Fishes; Field tests 
    Abstract
    Echo sounding is a powerful and widely used technique for remote sensing of the marine environment. In order to enhance the power of the echo sounder, a postprocessing system has been designed and realized in standard software that is essentially machine independent. This has been done by adhering to the following international standards: UNIX operating system, C programming language, X Window Systems, Structured‐Query Language (SQL) for communication with a relational database, and Transport Control Protocol/Internet Protocol (TCP/IP). Preprocessed data are transferred from the echo sounder to the postprocessing system by means of a local‐area network (LAN), namely Ethernet. Development of the postprocessing system, for analysis of such diverse scatterers as plankton, pelagic, and bottom fish, and the bottom itself, is documented in the following way. The history of echo integration is summarized. User requirements for the new system are listed. Reasons are given for the choice of the particular computing environment, including both hardware, software, and external communications. The system design, consisting of data flow and graphical user interfaces, is described. Implementation of the system is defined through integration techniques and a discussion of performance issues. Operating procedures and the first field trials of the system are described. Several features characteristic of and perhaps unique to the postprocessing system are, for example: (1) user definition of arbitrarily shaped integration regions, including non‐constant‐depth intervals, by means of interactive graphics; (2) preprocessor error correction, e.g., adjustment of the noise threshold or redefinition of the detected bottom; (3) use of several color map techniques in order to extract such information as signal strength and shape; and (4) the scheme of interconnections of graphical user interfaces, database, and data files. This work does not introduce a set of computer instructions. It does describe a design philosophy and method of realization that may have broader applications in acoustics than that ostensibly concerned only with the quantitative estimation of fish abundance.
    Description
    Author Posting. © Acoustical Society of America, 1991. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 90 (1991): 37-47, doi:10.1121/1.401261.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of the Acoustical Society of America 90 (1991): 37-47
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Deep seafloor arrivals in long range ocean acoustic propagation 

      Stephen, Ralph A.; Bolmer, S. Thompson; Udovydchenkov, Ilya A.; Worcester, Peter F.; Dzieciuch, Matthew A.; Andrew, Rex K.; Mercer, James A.; Colosi, John A.; Howe, Bruce M. (Acoustical Society of America, 2013-10)
      Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean ...
    • Thumbnail

      Sonar-induced pressure fields in a post-mortem common dolphin 

      Foote, Kenneth G.; Hastings, Mardi C.; Ketten, Darlene R.; Lin, Ying-Tsong; Reidenberg, Joy S.; Rye, Kent (Acoustical Society of America, 2012-02)
      Potential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen ...
    • Thumbnail

      Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range 

      Duda, Timothy F.; Lin, Ying-Tsong; Reeder, D. Benjamin (Acoustical Society of America, 2011-09)
      A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo