• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Extracting energy from unsteady flows through vortex control

    Thumbnail
    View/Open
    Streitlien_thesis.pdf (20.93Mb)
    Date
    1994-09
    Author
    Streitlien, Knut  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5563
    DOI
    10.1575/1912/5563
    Keyword
     Oscillating wings; Conformal mapping; Vortex-motion 
    Abstract
    Vortex control is a new paradigm in fluid mechanics, with applications to propulsion and wake reduction. A heaving and pitching hydrofoil placed in a flow with an array of oncoming vortices can achieve a very high propulsive efficiency and reduced wake signature. The canonical example of flow with regular arrays of vortices is the Karman vortex street, and this is our model for the inflow to the foil. The problem of an oscillating foil placed within a Karman vortex street is investigated with a theoretical model and numerical simulation. The theoretical model is an adaptation of the classical linear theory for unsteady aerofoils. It combines the effects of nonuniform inflow and foil motion to predict the resulting thrust, lift, and moment. The numerical procedure allows for nonlinear interaction between the foil, performing large amplitude oscillations, and the oncoming vortex street. The method is based on two- dimensional potential flow and the theory of functions of a complex variable. Careful formulation of the velocity potential, and closed form expressions for force and moment on a Joukowski foil in the presence of point vortices, permits rapid evaluation of hydrodynamic performance. The theory and simulation results agree in their main conclusion: For optimum performance, the foil should try to intercept the vortices head on, while remaining inside the border of the oncoming vortex street. This mode is associated with a high degree of interaction between oppositely signed vorticity in the combined wake leading to reduced wake signature. The lowest efficiency is predicted when the foil avoids coming close to the vortices, here the combined wake consists of a row of very strong vortices of alternate sign. The theory also indicates that an oscillating foil can recover more of the energy contained in the vortex street than a stationary one, but this has not been confirmed in simulation. The interaction process in the wake is studied in more detail, using a much simplified model; the foil wake is modeled as a uniform shear layer of small but finite thickness, and an oppositely signed vortex is placed next to it to simulate the effect of one of the vortices in the Karman street. The subsequent interaction is simulated with the vortex method, assuming periodic boundary conditions. These simulations show that the shear layer rolls up and partially engulfs the vortex patch when two conditions are satisfied. The vortex must be close to the shear layer, and the circulation about the vortex and a representative segment of the shear layer must balance, such that neither one dominates the problem. In both of these simulations, a fast, O(N), vortex summation method based on multipole expansions is used, with special adaptations to account for the influence of image vortices.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1994
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Streitlien, Knut, "Extracting energy from unsteady flows through vortex control", 1994-09, DOI:10.1575/1912/5563, https://hdl.handle.net/1912/5563
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Generation of mid-ocean eddies : the local baroclinic instability hypothesis 

      Arbic, Brian K. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2000-08)
      The plausibility of local baroclinic instability as a generation mechanism for midocean mesoscale eddies is examined with a two-layer, quasi-geostrophic (QG) model forced by an imposed, horizontally homogeneous, vertically ...
    • Thumbnail

      Submesoscale coherent vortices in the deep Brazil Basin 

      Kassis, Patricia (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2000-08)
      With Lagrangian and hydrographic data taken in the deep Brazil Basin, we identify several submesoscale coherent vortices (SCVs). These features contrast with SCV paradigms in that float data indicate approximately equal ...
    • Thumbnail

      Representation of eddies in climate models by a potential vorticity flux 

      Wardle, Richard M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-02)
      This thesis addresses the parameterization of the heat and momentum transporting properties of eddy motions for use in three-dimensional, primitive equation, z-coordinate atmosphere and ocean models. Determining the ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo