• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Biology
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    False killer whale (Pseudorca crassidens) echolocation and acoustic disruption : implications for longline bycatch and depredation

    Thumbnail
    View/Open
    Mooney_etal_CJZ.pdf (462.3Kb)
    Date
    2009-07-31
    Author
    Mooney, T. Aran  Concept link
    Pacini, Aude F.  Concept link
    Nachtigall, Paul E.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/3155
    As published
    https://doi.org/10.1139/Z09-061
    DOI
    10.1139/Z09-061
    Abstract
    False killer whales (Pseudorca crassidens (Owen, 1846)) depredate fish caught by the North Pacific pelagic longline fishery, resulting in loss of target species catch and the whales themselves becoming bycaught. This incidental take of false killer whales exceeds sustainable levels. In an effort to address a potential solution to reducing this depredation and bycatch, we tested an acoustic device designed to deter false killer whales from approaching longlines by reducing the whales’ echolocation performance capabilities. The device produced a series of complex, broadband signals (1–250 kHz) at high intensity levels (up to 182 dB). In the experiment, a trained false killer whale was asked to detect a target in the presence or absence of the acoustic device. Baseline performance capabilities were 95% correct responses. Initially, the device reduced the whale’s echolocation performance to chance levels. However, subsequent sessions demonstrated improvement in echolocation performance up to 85%. This improvement was likely a result of behaviorally adapting to the task and a decrease in the source level of the echolocation “disruptor”. The results underscore the challenges in using acoustic devices to reduce depredation and bycatch, and demonstrate the need for concern regarding anthropogenic noise levels and effects on odontocete echolocation capabilities.
    Description
    Author Posting. © The Authors, 2009. This article is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Zoology 87 (2009): 726-733, doi:10.1139/Z09-061.
    Collections
    • Biology
    Suggested Citation
    Canadian Journal of Zoology 87 (2009): 726-733
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo