Along-trench structural variations of the subducting Juan de Fuca Plate from multichannel seismic reflection imaging

Alternative Title
Date Created
Location
DOI
10.1002/2017JB015059
Related Materials
Replaces
Replaced By
Keywords
Cascadia subduction zone
Juan de Fuca Plate
Multichannel seismic reflection imaging
Subduction bending faulting
Propagator wakes
Strike-slip faults
Abstract
To characterize the along‐strike structural variations of the Juan de Fuca (JdF) Plate as it enters the Cascadia subduction zone, we present prestack time migrated multichannel seismic reflection images of the JdF Plate along a 400‐km‐long trench‐parallel transect extending from 44.3°N to 47.8°N. Beneath the 1.8–3.0‐km‐thick sediment cover, our data reveal basement topographic anomalies associated with a 1.2‐km‐high seamount and in the vicinity of propagator wakes (390–540‐m relief). Weak Moho reflections are imaged beneath the propagator wakes and coincide with reduced Vp in the lower crust and/or uppermost mantle. The inferred locations of propagator wakes in the downgoing plate collocate with some of the boundaries of episodic tremor and slip events. We propose that the structural and hydration heterogeneities associated with these features could lead to anomalous plate interface properties and contribute to episodic tremor and slip segmentation. Intracrustal reflections with apparent dips (20°–30°) consistent with subduction bending normal faults change near 45.8°N, from northward dipping reflections confined to the middle crust in the north to antithetic reflections through the crust in the south, coinciding with a Vp reduction in the lower crust. These observations indicate more extensive faulting deformation and associated hydration of the JdF Plate south of 45.8°N, which likely results from variations of slab dip and resistance to subduction across 46°N. Basement offsets and abrupt depth/amplitude changes in Moho reflections are imaged beneath the four major WNW trending strike‐slip faults that cross the Cascadia deformation front, providing strong evidence of a lower plate origin for these faults.
Description
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 3122-3146, doi:10.1002/2017JB015059.
Embargo Date
Citation
Journal of Geophysical Research: Solid Earth 123 (2018): 3122-3146
Cruises
Cruise ID
Cruise DOI
Vessel Name