On acoustic scattering by a shell-covered seafloor

Thumbnail Image
Date
2000-08
Authors
Stanton, Timothy K.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1121/1.429585
Related Materials
Replaces
Replaced By
Keywords
Underwater sound
Oceanography
Acoustic wave scattering
Backscatter
Abstract
Acoustic scattering by the seafloor is sometimes influenced, if not dominated, by the presence of discrete volumetric objects such as shells. A series of measurements of target strength of a type of benthic shelled animal and associated scattering modeling have recently been completed (Stanton et al., "Acoustic scattering by benthic and planktonic shelled animals," J. Acoust. Soc. Am., this issue). The results of that study are used herein to estimate the scattering by the seafloor with a covering of shells at high acoustic frequencies. A simple formulation is derived that expresses the area scattering strength of the seafloor in terms of the average reduced target strength or material properties of the discrete scatterers and their packing factor (where the reduced target strength is the target strength normalized by the geometric cross section of the scatterers and the averaging is done over orientation and/or a narrow range of size or frequency). The formula shows that, to first order, the backscattering at high acoustic frequencies by a layer of shells (or other discrete bodies such as rocks) depends principally upon material properties of the objects and packing factor and is independent of size and acoustic frequency. Estimates of area scattering strength using this formula and measured values of the target strength of shelled bodies from Stanton et al. (this issue) are close to or consistent with observed area scattering strengths due to shell-covered seafloors published in other papers.
Description
Author Posting. © Acoustical Society of America, 2000. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 108 (2000): 551-555, doi:10.1121/1.429585.
Embargo Date
Citation
Journal of the Acoustical Society of America 108 (2000): 551-555
Cruises
Cruise ID
Cruise DOI
Vessel Name