Methods for measuring denitrification : diverse approaches to a difficult problem
Methods for measuring denitrification : diverse approaches to a difficult problem
Date
2005-07-15
Authors
Groffman, Peter M.
Altabet, Mark A.
Bohlke, John K.
Butterbach-Bahl, Klaus
David, Mark B.
Firestone, Mary K.
Giblin, Anne E.
Kana, Todd M.
Nielsen, Lars Peter
Voytek, Mary A.
Altabet, Mark A.
Bohlke, John K.
Butterbach-Bahl, Klaus
David, Mark B.
Firestone, Mary K.
Giblin, Anne E.
Kana, Todd M.
Nielsen, Lars Peter
Voytek, Mary A.
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Denitrification
Greenhouse effect
Nitrate
Nitric oxide nitrogen
Nitrous oxide
Stable isotopes
Water quality
Greenhouse effect
Nitrate
Nitric oxide nitrogen
Nitrous oxide
Stable isotopes
Water quality
Abstract
Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O) and dinitrogen (N2), is important to primary production, water quality and the chemistry and physics of the atmosphere at ecosystem, landscape, regional and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses and future prospects for the different methods. Methodological approaches covered include; 1) acetylene-based methods, 2) 15N tracers, 3) direct N2 quantification, 4) N2/Ar ratio quantification, 5) mass balance approaches, 6) stoichiometric approaches, 7) methods based on stable isotopes, 8) in situ gradients with atmospheric environmental tracers and 9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.
Description
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 16 (2006): 2091–2122, doi:10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2.