Optogenetic mapping of cerebellar inhibitory circuitry reveals spatially biased coordination of interneurons via electrical synapses

Thumbnail Image
Date
2014-05-22
Authors
Kim, Jinsook
Lee, Soojung
Tsuda, Sachiko
Zhang, Xuying
Asrican, Brent
Gloss, Bernd
Feng, Guoping
Augustine, George J.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1016/j.celrep.2014.04.047
Related Materials
Replaces
Replaced By
Keywords
Abstract
We used high-speed optogenetic mapping technology to examine the spatial organization of local inhibitory circuits formed by cerebellar interneurons. Transgenic mice expressing channelrhodopsin-2 exclusively in molecular layer interneurons allowed us to focally photostimulate these neurons, while measuring resulting responses in postsynaptic Purkinje cells. This approach revealed that interneurons converge upon Purkinje cells over a broad area and that at least seven interneurons form functional synapses with a single Purkinje cell. The number of converging interneurons was reduced by treatment with gap junction blockers, revealing that electrical synapses between interneurons contribute substantially to the spatial convergence. Remarkably, gap junction blockers affected convergence in sagittal slices, but not in coronal slices, indicating a sagittal bias in electrical coupling between interneurons. We conclude that electrical synapse networks spatially coordinate interneurons in the cerebellum and may also serve this function in other brain regions.
Description
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell 7 (2014): 1601–1613, doi:10.1016/j.celrep.2014.04.047.
Embargo Date
Citation
Cell 7 (2014): 1601–1613
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported