Foraminiferal Mn/Ca as bottom-water hypoxia proxy: an assessment of Nonionella stella in the Santa Barbara Basin, USA

Thumbnail Image
Date
2021-10-18
Authors
Brinkmann, Inda
Ni, Sha
Schweizer, Magali
Oldham, Véronique E.
Quintana Krupinski, Nadine B.
Medjoubi, Kadda
Somogyi, Andrea
Whitehouse, Martin J.
Hansel, Colleen M.
Barras, Christine
Bernhard, Joan M.
Filipsson, Helena L.
Alternative Title
Date Created
Location
DOI
10.1029/2020PA004167
Related Materials
Replaces
Replaced By
Keywords
Benthic foraminifera
Deoxygenation
Micro-analytical techniques
Mn/Ca
Proxy calibration
Abstract
Hypoxia is of increasing concern in marine areas, calling for a better understanding of mechanisms leading to decreasing dissolved oxygen concentrations ([O2]). Much can be learned about the processes and implications of deoxygenation for marine ecosystems using proxy records from low-oxygen sites, provided proxies, such as the manganese (Mn) to calcium (Ca) ratio in benthic foraminiferal calcite, are available and well calibrated. Here we report a modern geochemical data set from three hypoxic sites within the Santa Barbara Basin (SBB), USA, where we study the response of Mn/Caforam in the benthic foraminifer Nonionella stella to variations in sedimentary redox conditions (Mn, Fe) and bottom-water dissolved [O2]. We combine molecular species identification by small subunit rDNA sequencing with morphological characterization and assign the SBB N. stella used here to a new phylotype (T6). Synchrotron-based scanning X-ray fluorescence (XRF) imaging and Secondary Ion Mass Spectrometry (SIMS) show low Mn incorporation (partition coefficient DMn < 0.05) and limited proxy sensitivity of N. stella, at least within the range of dissolved [O2] (2.7–9.6 μmol/l) and Mnpore-water gradients (2.12–21.59 μmol/l). Notably, even though intra- and interspecimen Mn/Ca variability (33% and 58%, respectively) was only partially controlled by the environment, Mn/Caforam significantly correlated with both pore-water Mn and bottom-water [O2]. However, the prevalent suboxic bottom-water conditions and limited dissolved [O2] range complicate the interpretation of trace-elemental trends. Additional work involving other oxygenation proxies and samples from a wider oxygen gradient should be pursued to further develop foraminiferal Mn/Ca as an indicator for hypoxic conditions.
Description
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brinkmann, I., Ni, S., Schweizer, M., Oldham, V. E., Quintana Krupinski, N. B., Medjoubi, K., Somogyi, A., Whitehouse, M. J., Hansel, C. M., Barras, C., Bernhard, J. M., & Filipsson, H. L. Foraminiferal Mn/Ca as bottom-water hypoxia proxy: an assessment of Nonionella stella in the Santa Barbara Basin, USA. Paleoceanography and Paleoclimatology, 36(11), (2021): e2020PA004167, https://doi.org/10.1029/2020PA004167.
Embargo Date
Citation
Brinkmann, I., Ni, S., Schweizer, M., Oldham, V. E., Quintana Krupinski, N. B., Medjoubi, K., Somogyi, A., Whitehouse, M. J., Hansel, C. M., Barras, C., Bernhard, J. M., & Filipsson, H. L. (2021). Foraminiferal Mn/Ca as bottom-water hypoxia proxy: an assessment of Nonionella stella in the Santa Barbara Basin, USA. Paleoceanography and Paleoclimatology, 36(11), e2020PA004167.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International