Deepwater expansion and enhanced remineralization in the eastern equatorial Pacific during the last glacial maximum

Alternative Title
Date Created
Related Materials
Replaced By
Benthic foraminifera
Carbon isotopes
Published estimates of the radiocarbon content of middepth waters suggest a decrease in ventilation in multiple locations during the last glacial maximum (LGM; 24.0–18.1 ka). Reduced glacial ventilation would have allowed respired carbon to accumulate in those waters. A subsequent deglacial release of this respired carbon reservoir to the atmosphere could then account for the observed increases in atmospheric CO2 and decline in atmospheric radiocarbon content. However, age model error and a release of 14C‐depleted mantle carbon have also been cited as possible explanations for the observed middepth radiocarbon depletions, calling into question the deep ocean's role in storing respired carbon during the LGM. Joint measurements of benthic foraminiferal carbon isotope values (δ13C) and cadmium/calcium (Cd/Ca) ratios provide a method for isolating the air‐sea component of a water mass from changes in remineralization. Here we use benthic foraminiferal δ13C and Cd/Ca records from the eastern equatorial Pacific to constrain changes in remineralization and water‐mass mixing over the last glacial‐interglacial transition. These records are complemented with elemental measurements of the authigenic coatings of foraminifera to monitor postdepositional changes in bottom water properties. Our results suggest an increase of deep waters at midwater depths consistent with a shoaling of the boundary between the upper and lower branches of Southern Ocean overturning circulation. Additionally, our records demonstrate increased organic matter remineralization in middepth waters during the LGM, suggesting that respired carbon did accumulate in middepth waters under periods of reduced ventilation.
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 563-578, doi:10.1029/2017PA003221.
Embargo Date
Paleoceanography and Paleoclimatology 33 (2018): 563-578
Cruise ID
Cruise DOI
Vessel Name