Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments

Thumbnail Image
Date
2017-06-05
Authors
Wankel, Scott D.
Ziebis, Wiebke
Buchwald, Carolyn
Charoenpong, Chawalit N.
de Beer, Dirk
Dentinger, Jane
Xu, Zhenjiang
Zengler, Karsten
Alternative Title
Date Created
Location
DOI
10.1038/ncomms15595
Related Materials
Replaces
Replaced By
Keywords
Abstract
Although increasing atmospheric nitrous oxide (N2O) has been linked to nitrogen loading, predicting emissions remains difficult, in part due to challenges in disentangling diverse N2O production pathways. As coastal ecosystems are especially impacted by elevated nitrogen, we investigated controls on N2O production mechanisms in intertidal sediments using novel isotopic approaches and microsensors in flow-through incubations. Here we show that during incubations with elevated nitrate, increased N2O fluxes are not mediated by direct bacterial activity, but instead are largely catalysed by fungal denitrification and/or abiotic reactions (e.g., chemodenitrification). Results of these incubations shed new light on nitrogen cycling complexity and possible factors underlying variability of N2O fluxes, driven in part by fungal respiration and/or iron redox cycling. As both processes exhibit N2O yields typically far greater than direct bacterial production, these results emphasize their possibly substantial, yet widely overlooked, role in N2O fluxes, especially in redox-dynamic sediments of coastal ecosystems.
Description
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 15595, doi:10.1038/ncomms15595.
Embargo Date
Citation
Nature Communications 8 (2017): 15595
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International