Release of multiple bubbles from cohesive sediments

Alternative Title
Date Created
Location
DOI
10.1029/2011GL046870
Related Materials
Replaces
Replaced By
Keywords
Methane
Bubbles
Ebullition
Tides
Sediments
Facture
Abstract
Methane is a strong greenhouse gas, and marine and wetland sediments constitute significant sources to the atmosphere. This flux is dominated by the release of bubbles, and quantitative prediction of this bubble flux has been elusive because of the lack of a mechanistic model. Our previous work has shown that sediments behave as elastic fracturing solids during bubble growth and rise. We now further argue that bubbles can open previously formed, partially annealed, rise tracts (fractures) and that this mechanism can account for the observed preferential release at low tides in marine settings. When this mechanical model is applied to data from Cape Lookout Bight, NC (USA), the results indicate that methanogenic bubbles released at this site do indeed follow previously formed rise tracts and that the calculated release rates are entirely consistent with the rise of multiple bubbles on tidal time scales. Our model forms a basis for making predictions of future bubble fluxes from warming sediments under the influence of climate change.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L08606, doi:10.1029/2011GL046870.
Embargo Date
Citation
Geophysical Research Letters 38 (2011): L08606
Cruises
Cruise ID
Cruise DOI
Vessel Name