Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35°45′–36°35′N)

Thumbnail Image
Date
2016-09-07
Authors
Eason, Deborah E.
Dunn, Robert A.
Canales, J. Pablo
Sohn, Robert A.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1002/2016GC006433
Related Materials
Replaces
Replaced By
Keywords
Mid-ocean ridges
Oceanic core complex
Rainbow massif
Backscatter
Abstract
Along-axis variations in melt supply and thermal structure can lead to significant variations in the mode of crustal accretion at mid-ocean ridges. We examine variations in seafloor volcanic and tectonic processes on the scale of individual ridge segments in a region of the slow spreading Mid-Atlantic Ridge (35°45′–36°35′N) centered on the Rainbow nontransform discontinuity (NTD). We use multibeam sonar backscatter amplitude data, taking advantage of multifold and multidirectional coverage from the MARINER geophysical study to create a gridded compilation of seafloor reflectivity, and interpret the sonar image within the context of other data to examine seafloor properties and identify volcanic flow fields and tectonic features. Along the spreading segments, differences in volcanic productivity, faulting, eruption style, and frequency correlate with inferred magma supply. Regions of low magma supply are associated with more widely spaced faults, and larger volcanic flow fields that are more easily identified in the backscatter image. Identified flow fields with the highest backscatter occur near the ends of ridge segments. Their relatively smooth topography contrasts with the more hummocky, cone-dominated terrain that dominates most of the neovolcanic zone. Patches of seafloor with high, moderately high, and low backscatter intensity across the Rainbow massif are spatially correlated with observations of basalt, gabbro and serpentinized peridotite, and sediment, respectively. Large detachment faults have repeatedly formed along the inside corners of the Rainbow NTD, producing a series of oceanic core complexes along the wake of the NTD. A new detachment fault is currently forming in the ridge segment just north of the now inactive Rainbow massif.
Description
Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 3560–3579, doi:10.1002/2016GC006433.
Embargo Date
Citation
Geochemistry, Geophysics, Geosystems 17 (2016): 3560–3579
Cruises
Cruise ID
Cruise DOI
Vessel Name