Analysis of modal evolution caused by a weakly range-dependent seabed in shallow water and its application to inversion for geoacoustic properties

dc.contributor.author Ohta, Kazuhiko
dc.coverage.spatial Nantucket Sound
dc.coverage.spatial Hudson Canyon
dc.date.accessioned 2012-11-06T19:17:48Z
dc.date.available 2012-11-06T19:17:48Z
dc.date.issued 1993-09
dc.description Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1993 en_US
dc.description.abstract In a shallow water ocean environment, the range-dependent variation of the geoacoustic properties of the seabed is one of the crucial factors affecting sound propagation. Since the local modes of propagation depend on the spatial changes in the bottom sediments, the local eigenvalues of these modes are useful as tools for examining the range dependence of the sediment properties. In order to extract the local eigenvalues from measurements of the pressure field in a laterally inhomogeneous waveguide, the zero-order asymptotic Hankel transform with a short sliding window is utilized. The local peak positions in the output spectra differ from the local eigenvalues due to both the range variation of the local modes and the interference of adjacent modes. The departure due to the former factor is evaluated analytically by using the stationary phase method. In order to reduce the error induced by the latter factor, mode filtering is utilized by incorporating data from a fixed vertical array of receivers. The use of the above zero-order Hankel transform in a three-dimensionally varying waveguide results in an underestimate of the local eigenvalues due to the effect of horizontal refraction. Thus a general asymptotic Hankel transform with a 2-D sliding window is used to correct for the underestimated amount. By expanding the latter transform with respect to the azimuthal angle, it can also be shown that the first term in the Taylor series corresponds to the former transform; the rest of the terms account for the value difference between the underestimated and actual local eigenvalues. In order to obtain the spatial variation of the sediment properties from the rangedependent variation of the extracted local eigenvalues, the analytical relationship between these two variations is derived by using a perturbation method in a horizontally varying, multi-layered bottom model. Upon use of the n2-linear profile in each layer, the relationship can be obtained in closed form. As a result, the range variation of the local eigenvalues may be separated into terms that depend on each geoacoustic parameter. Based on this relation, an inversion method for determining the range-dependent geoacoustic parameters is developed. The methods developed in this thesis are applied to simulated pressure field data as well as experimental field data. It is shown that the evolution with range of the local modes as well as the range-dependent geoacoustic properties can be successfully estimated. en_US
dc.description.sponsorship Financial support for my research was provided by the WHOI Education Department and the Office of Naval Research. en_US
dc.format.mimetype application/pdf
dc.identifier.citation Ohta, K. (1993). Analysis of modal evolution caused by a weakly range-dependent seabed in shallow water and its application to inversion for geoacoustic properties [Doctoral thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution]. Woods Hole Open Access Server. https://doi.org/10.1575/1912/5510
dc.identifier.doi 10.1575/1912/5510
dc.identifier.uri https://hdl.handle.net/1912/5510
dc.language.iso en_US en_US
dc.publisher Massachusetts Institute of Technology and Woods Hole Oceanographic Institution en_US
dc.relation.ispartofseries WHOI Theses en_US
dc.subject Marine sediments en_US
dc.subject Ocean bottom en_US
dc.subject Sound en_US
dc.title Analysis of modal evolution caused by a weakly range-dependent seabed in shallow water and its application to inversion for geoacoustic properties en_US
dc.type Thesis en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 63c4abe4-e43d-46b7-b23d-824edcdcc5d4
relation.isAuthorOfPublication.latestForDiscovery 63c4abe4-e43d-46b7-b23d-824edcdcc5d4
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
Ohta_thesis.pdf
Size:
38.89 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: