Mask R-CNN and U-Net model and output of coral reef halo measurements based on global multispectral satellite imagery
Mask R-CNN and U-Net model and output of coral reef halo measurements based on global multispectral satellite imagery
Date
2024-12-18
Authors
Madin, Elizabeth
Franceschini, Simone
Franceschini, Simone
Linked Authors
Alternative Title
Citable URI
Date Created
2024-12-18
Location
Hawai’i (field components) and global (synthetic components)
DOI
10.26008/1912/bco-dmo.943698.1
Related Materials
Replaces
Replaced By
Keywords
Abstract
Reef halos are rings of bare sand that surround coral reef patches. Halo formation is likely to be the indirectly result of interactions between relatively healthy predator and herbivore populations. To reduce the risk of predation, herbivores preferentially graze close to the safety of the reef, potentially affecting the presence and size of the halo. Reef halos are readily visible in remotely sensed imagery, and monitoring their presence and changes in size may therefore offer clues as to how predator and herbivore populations are faring. However, manually identifying and measuring halos is slow and limits the spatial and temporal scope of studies. There are currently no existing tools to automatically identify single reef halos and measure their size to speed up their identification and improve our ability to quantify their variability over space and time.
Here we present a set of convolutional neural networks aimed at identifying and measuring reef halos from very high-resolution satellite imagery (i.e., ∼0.6 m spatial resolution). We show that deep learning algorithms can successfully detect and measure reef halos with a high degree of accuracy (F1 = 0.824), thereby enabling faster, more accurate spatio-temporal monitoring of halo size. This tool will aid in the global study of reef halos, and potentially coral reef ecosystem monitoring, by facilitating our discovery of the ecological dynamics underlying reef halo presence and variability.
For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/943698
Description
Dataset: Mask R-CNN and U-Net models and reef halo ouput calculations
Embargo Date
Citation
Madin, E., & Franceschini, S. (2024). Mask R-CNN and U-Net model and output of coral reef halo measurements based on global multispectral satellite imagery (Version 1) [Data set]. Biological and Chemical Oceanography Data Management Office (BCO-DMO). https://doi.org/10.26008/1912/BCO-DMO.943698.1