Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate

Thumbnail Image
Date
2009-02-27
Authors
Helgerud, M. B.
Waite, William F.
Kirby, S. H.
Nur, A.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1029/2008JB006132
Related Materials
Replaces
Replaced By
Keywords
Wave speed
Elastic moduli
Gas hydrate
Abstract
We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from −20 to −5°C and 22.4 to 32.8 MPa for ice Ih, −20 to 15°C and 30.5 to 97.7 MPa for sI methane hydrate, and −20 to 10°C and 30.5 to 91.6 MPa for sII methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates.
Description
Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B02212, doi:10.1029/2008JB006132.
Embargo Date
Citation
Journal of Geophysical Research 114 (2009): B02212
Cruises
Cruise ID
Cruise DOI
Vessel Name