Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability

dc.contributor.author Subramanian, Aneesh C.
dc.contributor.author Balmaseda, Magdalena A.
dc.contributor.author Centurioni, Luca R.
dc.contributor.author Chattopadhyay, Rajib
dc.contributor.author Cornuelle, Bruce D.
dc.contributor.author DeMott, Charlotte
dc.contributor.author Flatau, Maria
dc.contributor.author Fujii, Yosuke
dc.contributor.author Giglio, Donata
dc.contributor.author Gille, Sarah T.
dc.contributor.author Hamill, Thomas M.
dc.contributor.author Hendon, Harry
dc.contributor.author Hoteit, Ibrahim
dc.contributor.author Kumar, Arun
dc.contributor.author Lee, Jae-Hak
dc.contributor.author Lucas, Andrew J.
dc.contributor.author Mahadevan, Amala
dc.contributor.author Matsueda, Mio
dc.contributor.author Nam, SungHyun
dc.contributor.author Paturi, Shastri
dc.contributor.author Penny, Stephen G.
dc.contributor.author Rydbeck, Adam
dc.contributor.author Sun, Rui
dc.contributor.author Takaya, Yuhei
dc.contributor.author Tandon, Amit
dc.contributor.author Todd, Robert E.
dc.contributor.author Vitart, Frederic
dc.contributor.author Yuan, Dongliang
dc.contributor.author Zhang, Chidong
dc.date.accessioned 2019-10-10T18:17:14Z
dc.date.available 2019-10-10T18:17:14Z
dc.date.issued 2019-08-08
dc.description © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Subramanian, A. C., Balmaseda, M. A., Centurioni, L., Chattopadhyay, R., Cornuelle, B. D., DeMott, C., Flatau, M., Fujii, Y., Giglio, D., Gille, S. T., Hamill, T. M., Hendon, H., Hoteit, I., Kumar, A., Lee, J., Lucas, A. J., Mahadevan, A., Matsueda, M., Nam, S., Paturi, S., Penny, S. G., Rydbeck, A., Sun, R., Takaya, Y., Tandon, A., Todd, R. E., Vitart, F., Yuan, D., & Zhang, C. Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Frontiers in Marine Science, 6, (2019): 427, doi:10.3389/fmars.2019.00427. en_US
dc.description.abstract Subseasonal-to-seasonal (S2S) forecasts have the potential to provide advance information about weather and climate events. The high heat capacity of water means that the subsurface ocean stores and re-releases heat (and other properties) and is an important source of information for S2S forecasts. However, the subsurface ocean is challenging to observe, because it cannot be measured by satellite. Subsurface ocean observing systems relevant for understanding, modeling, and forecasting on S2S timescales will continue to evolve with the improvement in technological capabilities. The community must focus on designing and implementing low-cost, high-value surface and subsurface ocean observations, and developing forecasting system capable of extracting their observation potential in forecast applications. S2S forecasts will benefit significantly from higher spatio-temporal resolution data in regions that are sources of predictability on these timescales (coastal, tropical, and polar regions). While ENSO has been a driving force for the design of the current observing system, the subseasonal time scales present new observational requirements. Advanced observation technologies such as autonomous surface and subsurface profiling devices as well as satellites that observe the ocean-atmosphere interface simultaneously can lead to breakthroughs in coupled data assimilation (CDA) and coupled initialization for S2S forecasts. These observational platforms should also be tested and evaluated in ocean observation sensitivity experiments with current and future generation CDA and S2S prediction systems. Investments in the new ocean observations as well as model and DA system developments can lead to substantial returns on cost savings from disaster mitigation as well as socio–economic decisions that use S2S forecast information. en_US
dc.description.sponsorship AS was funded by NOAA Climate Variability and Prediction Program (NA14OAR4310276) and the NSF Earth System Modeling Program (OCE1419306). CD was funded by NA16OAR4310094. SG and DG were funded by NASA awards NNX14AO78G and 80NSSC19K0059. DY was supported by NSFC (91858204, 41720104008, and 41421005). en_US
dc.identifier.citation Subramanian, A. C., Balmaseda, M. A., Centurioni, L., Chattopadhyay, R., Cornuelle, B. D., DeMott, C., Flatau, M., Fujii, Y., Giglio, D., Gille, S. T., Hamill, T. M., Hendon, H., Hoteit, I., Kumar, A., Lee, J., Lucas, A. J., Mahadevan, A., Matsueda, M., Nam, S., Paturi, S., Penny, S. G., Rydbeck, A., Sun, R., Takaya, Y., Tandon, A., Todd, R. E., Vitart, F., Yuan, D., & Zhang, C. (2019). Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Frontiers in Marine Science, 6, 427. en_US
dc.identifier.doi 10.3389/fmars.2019.00427
dc.identifier.uri https://hdl.handle.net/1912/24685
dc.publisher Frontiers Media en_US
dc.relation.uri https://doi.org/10.3389/fmars.2019.00427
dc.rights Attribution 4.0 International *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/ *
dc.subject Subseasonal en_US
dc.subject Seasonal en_US
dc.subject Predictions en_US
dc.subject Air-sea interaction en_US
dc.subject Satellite en_US
dc.subject Argo en_US
dc.subject Gliders en_US
dc.subject Drifters en_US
dc.title Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication d6495776-b0f6-4394-8283-37429e1be60f
relation.isAuthorOfPublication ca44ee69-7eaa-4561-a5b3-c50b58249f7d
relation.isAuthorOfPublication 4159c59b-4433-4644-a8c8-c282f3d130bc
relation.isAuthorOfPublication 0a58a652-4da4-4001-8f3a-def8d14f70c4
relation.isAuthorOfPublication 69cdfe27-6c85-4155-9dd6-ecf42ee6586c
relation.isAuthorOfPublication ecbe27e5-642e-4d05-8238-91eb799881b3
relation.isAuthorOfPublication 4818c45d-b95a-44ac-84a9-5d5c416a2736
relation.isAuthorOfPublication 3c4e301f-7295-4fc6-8f67-8ad2df960b67
relation.isAuthorOfPublication d78e595c-974d-4e7f-ad78-6b5183604328
relation.isAuthorOfPublication 27c9ca0e-e34a-479d-a476-61f9497a4405
relation.isAuthorOfPublication de3c4bcf-64a9-4bfa-9ba2-99035f1d8554
relation.isAuthorOfPublication fb21f9f4-4dcb-42b2-83f7-1bc2aa72fefc
relation.isAuthorOfPublication 5a621604-d105-4ea9-9317-4510f4a2f63a
relation.isAuthorOfPublication 7445b4ac-1573-4022-b488-5c647f595b69
relation.isAuthorOfPublication 915cc871-1198-4c72-9c77-53e9fcc597c0
relation.isAuthorOfPublication c1704673-4872-466d-b84a-ded4beca3bac
relation.isAuthorOfPublication 3872462f-4666-4bdf-93f6-25499c9523e5
relation.isAuthorOfPublication 850edcd9-c0bd-47cb-8599-adb516da0619
relation.isAuthorOfPublication 2484e249-ba21-4c91-a4ad-05b9ddcb4855
relation.isAuthorOfPublication e03c9090-8120-4041-bde3-b840d522b8bc
relation.isAuthorOfPublication 0f90d77d-736c-4762-8347-99ff3a476af3
relation.isAuthorOfPublication d64157a1-0e8b-4cf4-9190-b53f88e55a14
relation.isAuthorOfPublication f3e2f79a-48a6-4a86-b303-f09a38bad933
relation.isAuthorOfPublication 9dbc6017-8238-471a-b9fc-a4c0dec86e05
relation.isAuthorOfPublication 6a665c80-717a-4850-a144-722a57ad0915
relation.isAuthorOfPublication 8121823d-0775-4ded-8937-71a171b5db14
relation.isAuthorOfPublication 3de2cb2f-650b-4ee3-a016-e2afb9f43fa5
relation.isAuthorOfPublication 0042af25-1272-44d1-a6e5-9cc7dd47da07
relation.isAuthorOfPublication 8a6eb316-f11c-43cf-b35b-9cba4857f1ea
relation.isAuthorOfPublication.latestForDiscovery d6495776-b0f6-4394-8283-37429e1be60f
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
fmars-06-00427.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: