Decay and return of internal solitary waves with rotation

Thumbnail Image
Date
2006-12-18
Authors
Helfrich, Karl R.
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Nonlinear internal waves
Solitary waves
Rotation
Abstract
The effect of rotation on the propagation of internal solitary waves is examined. Wave evolution is followed using a new rotating extension of a fully-nonlinear, weakly nonhydrostatic theory for waves in a two-layer system. When a solitary wave solution of the non-rotating equations is used as the initial condition the wave initially decays by radiation of longer inertia-gravity waves. The radiated inertia-gravity wave always steepens, leading to the formation a secondary solitary-like wave. This decay and re-emergence process then repeats. Eventually a nearly localized wavepacket emerges. It consists of a longwave envelope and shorter, faster solitary-like waves that propagate through the envelope. The radiation from this mature state is very weak, leading to a robust, long-lived structure that may contain as much as 50% of the energy in the initial solitary wave. Interacting packets may either pass through one another, or merge to form a longer packet. The packets appear to be modulated, fully-nonlinear versions of the steadily translating quasi-cnoidal waves.
Description
Author Posting. © The Author, 2007. This is the author's version of the work. It is posted here by permission of American Institute of Physics for personal use, not for redistribution. The definitive version was published in Physics of Fluids 19 (2007): 026601, doi:10.1063/1.2472509.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name