PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010 : 1. Toxin levels
PSP toxin levels and plankton community composition and abundance in size-fractionated vertical profiles during spring/summer blooms of the toxic dinoflagellate Alexandrium fundyense in the Gulf of Maine and on Georges Bank, 2007, 2008, and 2010 : 1. Toxin levels
Date
2013-04-12
Authors
Deeds, Jonathan R.
Petitpas, Christian M.
Shue, Vangie
White, Kevin D.
Keafer, Bruce A.
McGillicuddy, Dennis J.
Milligan, Peter J.
Anderson, Donald M.
Turner, Jefferson T.
Petitpas, Christian M.
Shue, Vangie
White, Kevin D.
Keafer, Bruce A.
McGillicuddy, Dennis J.
Milligan, Peter J.
Anderson, Donald M.
Turner, Jefferson T.
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1016/j.dsr2.2013.04.013
Related Materials
Replaces
Replaced By
Keywords
Harmful algal bloom
PSP toxins
Alexandrium sp.
Vectorial intoxication
Gulf of Maine
Georges Bank
PSP toxins
Alexandrium sp.
Vectorial intoxication
Gulf of Maine
Georges Bank
Abstract
As part of the NOAA ECOHAB funded Gulf of Maine Toxicity (GOMTOX)1 project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin composition, and concentration in quantitatively-sampled size-fractionated (20–64, 64–100, 100–200, 200–500, and >500 μm) particulate water samples, and the community composition of potential grazers of A. fundyense in these size fractions, at multiple depths (typically 1, 10, 20 m, and near-bottom) during 10 large-scale sampling cruises during the A. fundyense bloom season (May–August) in the coastal Gulf of Maine and on Georges Bank in 2007, 2008, and 2010. Our findings were as follows: (1) when all sampling stations and all depths were summed by year, the majority (94%±4%) of total PSP toxicity was contained in the 20–64 μm size fraction; (2) when further analyzed by depth, the 20–64 μm size fraction was the primary source of toxin for 97% of the stations and depths samples over three years; (3) overall PSP toxin profiles were fairly consistent during the three seasons of sampling with gonyautoxins (1, 2, 3, and 4) dominating (90.7%±5.5%), followed by the carbamate toxins saxitoxin (STX) and neosaxitoxin (NEO) (7.7%±4.5%), followed by n-sulfocarbamoyl toxins (C1 and 2, GTX5) (1.3%±0.6%), followed by all decarbamoyl toxins (dcSTX, dcNEO, dcGTX2&3) (<1%), although differences were noted between PSP toxin compositions for nearshore coastal Gulf of Maine sampling stations compared to offshore Georges Bank sampling stations for 2 out of 3 years; (4) surface cell counts of A. fundyense were a fairly reliable predictor of the presence of toxins throughout the water column; and (5) nearshore surface cell counts of A. fundyense in the coastal Gulf of Maine were not a reliable predictor of A. fundyense populations offshore on Georges Bank for 2 out of the 3 years sampled.
Description
This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 329–349, doi:10.1016/j.dsr2.2013.04.013.
Embargo Date
Citation
Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 329–349