The coastal bottom boundary layer : a note on the model of Chapman and Lentz

dc.contributor.author Pedlosky, Joseph
dc.date.accessioned 2010-11-23T15:43:24Z
dc.date.available 2010-11-23T15:43:24Z
dc.date.issued 2007-11
dc.description Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2776-2784, doi:10.1175/2007JPO3710.1. en_US
dc.description.abstract The bottom boundary layer of a stratified flow on a coastal continental shelf is examined using the model of Chapman and Lentz. The flow is driven by a surface stress, uniform in the alongshore coordinate, in a downwelling-favorable direction. The stress diminishes in the offshore direction and produces an Ekman pumping, as well as an onshore Ekman flux. The model yields an interior flow, sandwiched between an upper Ekman layer and a bottom boundary layer. The interior has a horizontal density gradient produced by a balance between horizontal diffusion of density and vertical advection of a background vertical density gradient. The interior flow is vertically sheared and in thermal wind balance. Whereas the original model of Chapman and Lentz considered an alongshore flow that is freely evolving, the present note focuses on the equilibrium structure of a flow driven by stress and discusses the vertical and lateral structure of the flow and, in particular, the boundary layer thickness. The vertical diffusivity of density in the bottom boundary layer is considered so strong, locally, as to render the bottom boundary layer’s density a function of only offshore position. Boundary layer budgets of mass, momentum, and buoyancy determine the barotropic component of the interior flow as well as the boundary layer thickness, which is a function of the offshore coordinate. The alongshore flow has enhanced vertical shear in the boundary layer that reduces the alongshore flow in the boundary layer; however, the velocity at the bottom is generally not zero but produces a stress that locally balances the applied surface stress. The offshore transport in the bottom boundary layer therefore balances the onshore surface Ekman flux. The model predicts the thickness of the bottom boundary layer, which is a complicated function of several parameters, including the strength of the forcing stress, the vertical and horizontal diffusion coefficients in the interior, and the horizontal diffusion in the boundary layer. The model yields a boundary layer over only a finite portion of the bottom slope if the interior diffusion coefficients are too large; otherwise, the layer extends over the full lateral extent of the domain. en_US
dc.description.sponsorship This research was supported in part by NSF Grant OCE-851086.00. en_US
dc.format.mimetype application/pdf
dc.identifier.citation Journal of Physical Oceanography 37 (2007): 2776-2784 en_US
dc.identifier.doi 10.1175/2007JPO3710.1
dc.identifier.uri https://hdl.handle.net/1912/4112
dc.language.iso en_US en_US
dc.publisher American Meteorological Society en_US
dc.relation.uri https://doi.org/10.1175/2007JPO3710.1
dc.subject Boundary layer en_US
dc.subject Continental shelf en_US
dc.subject Coastal flows en_US
dc.subject Ekman pumping en_US
dc.subject Forcing en_US
dc.title The coastal bottom boundary layer : a note on the model of Chapman and Lentz en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f5dbc523-4176-4180-9ef3-b4f6dbff4163
relation.isAuthorOfPublication.latestForDiscovery f5dbc523-4176-4180-9ef3-b4f6dbff4163
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
2007JPO3710.1.pdf
Size:
465.02 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: