Magnetotelluric data, stable distributions and impropriety: an existential combination
Magnetotelluric data, stable distributions and impropriety: an existential combination
Date
2014-05-30
Authors
Chave, Alan D.
Linked Authors
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1093/gji/ggu121
Related Materials
Replaces
Replaced By
Keywords
Time series analysis
Numerical approximations and analysis
Fractals and multifractals
Probability distributions
Magnetotellurics
Numerical approximations and analysis
Fractals and multifractals
Probability distributions
Magnetotellurics
Abstract
The robust statistical model of a Gaussian core contaminated by outlying data that underlies robust estimation of the magnetotelluric (MT) response function has been re-examined. The residuals from robust estimators are systematically long tailed compared to a distribution based on the Gaussian, and hence are inconsistent with the robust model. Instead, MT data are pervasively described by the alpha stable distribution family whose variance and sometimes mean are undefined. A maximum likelihood estimator (MLE) that exploits the stable nature of MT data is formulated, and its two-stage implementation in which stable parameters are first fit to the data and then the MT responses are solved for is described. The MLE is shown to be inherently robust, but differs from the conventional robust estimator because it is based on a model derived from the data, while robust estimators are ad hoc, being based on the robust model that is inconsistent with actual data. Propriety versus impropriety of the complex MT response was investigated, and a likelihood ratio test for propriety and its null distribution was established. The Cramér-Rao lower bounds for the covariance matrix of proper and improper MT responses were specified.
The MLE was applied to exemplar long period and broad-band data sets from South Africa. Both are shown to be significantly stably distributed using the Kolmogorov–Smirnov goodness of fit and Ansari-Bradley non-parametric dispersion tests. Impropriety of the MT responses at both sites is pervasive, hence the improper Cramér-Rao bound was used to estimate the MLE covariance. The MLE is shown to be nearly unbiased and well described by a Gaussian distribution based on bootstrap simulation. The MLE was compared to a conventional robust estimator, establishing that the standard errors of the former are systematically smaller than for the latter and that the standardized differences between them exhibit excursions that are both too frequent and too large to be described by a Gaussian model. This is ascribed to pervasive bias of the robust estimator that is to some degree obscured by their systematically large confidence bounds. Finally, a series of topics for further investigation is proposed.
Description
Author Posting. © Author, 2014. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 198 (2014): 622-636, doi: 10.1093/gji/ggu121.
Embargo Date
Citation
Geophysical Journal International 198 (2014): 622-636