Metrics that matter for assessing the ocean biological carbon pump
Metrics that matter for assessing the ocean biological carbon pump
Date
2020-04-06
Authors
Buesseler, Ken O.
Boyd, Philip
Black, Erin E.
Siegel, David A.
Boyd, Philip
Black, Erin E.
Siegel, David A.
Linked Authors
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1073/pnas.1918114117
Related Materials
Replaces
Replaced By
Keywords
Biological carbon pump
Twilight zone
Particle flux
Twilight zone
Particle flux
Abstract
The biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans’ interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation’s Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the “Martin curve.” We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.
Description
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, (2020): 201918114, doi: 10.1073/pnas.1918114117.
Embargo Date
Citation
Buesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. (2020). Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, 201918114.