The cospectrum of stress-carrying turbulence in the presence of surface gravity waves

Thumbnail Image
Date
2017-12-28
Authors
Trowbridge, John H.
Scully, Malcolm E.
Sherwood, Christopher R.
Alternative Title
Date Created
Location
DOI
10.1175/JPO-D-17-0016.1
Related Materials
Replaces
Replaced By
Keywords
Ocean
Abstract
The cospectrum of the horizontal and vertical turbulent velocity fluctuations, an essential tool for understanding measurements of the turbulent Reynolds shear stress, often departs in the ocean from the shape that has been established in the atmospheric surface layer. Here, we test the hypothesis that this departure is caused by advection of standard boundary layer turbulence by the random oscillatory velocities produced by surface gravity waves. The test is based on a model with two elements. The first is a representation of the spatial structure of the turbulence, guided by rapid distortion theory, and consistent with the one-dimensional cospectra that have been measured in the atmosphere. The second model element is a map of the spatial structure of the turbulence to the temporal fluctuations measured at fixed sensors, assuming advection of frozen turbulence by the velocities associated with surface waves. The model is adapted to removal of the wave velocities from the turbulent fluctuations using spatial filtering. The model is tested against previously published laboratory measurements under wave-free conditions and two new sets of measurements near the seafloor in the coastal ocean in the presence of waves. Although quantitative discrepancies exist, the model captures the dominant features of the laboratory and field measurements, suggesting that the underlying model physics are sound.
Description
Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 29-44, doi:10.1175/JPO-D-17-0016.1.
Embargo Date
Citation
Journal of Physical Oceanography 48 (2018): 29-44
Cruises
Cruise ID
Cruise DOI
Vessel Name