Tidal and thermal stresses drive seismicity along a major Ross Ice Shelf rift

dc.contributor.author Olinger, Seth D.
dc.contributor.author Lipovsky, Bradley P.
dc.contributor.author Wiens, Douglas A.
dc.contributor.author Aster, Richard C.
dc.contributor.author Bromirski, Peter D.
dc.contributor.author Chen, Zhao
dc.contributor.author Gerstoft, Peter
dc.contributor.author Nyblade, Andrew A.
dc.contributor.author Stephen, Ralph A.
dc.date.accessioned 2019-09-17T14:51:49Z
dc.date.available 2019-11-23T09:08:52Z
dc.date.issued 2019-05-23
dc.description Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(12), (2019): 6644-6652, doi:10.1029/2019GL082842. en_US
dc.description.abstract Understanding deformation in ice shelves is necessary to evaluate the response of ice shelves to thinning. We study microseismicity associated with ice shelf deformation using nine broadband seismographs deployed near a rift on the Ross Ice Shelf. From December 2014 to November 2016, we detect 5,948 icequakes generated by rift deformation. Locations were determined for 2,515 events using a least squares grid‐search and double‐difference algorithms. Ocean swell, infragravity waves, and a significant tsunami arrival do not affect seismicity. Instead, seismicity correlates with tidal phase on diurnal time scales and inversely correlates with air temperature on multiday and seasonal time scales. Spatial variability in tidal elevation tilts the ice shelf, and seismicity is concentrated while the shelf slopes downward toward the ice front. During especially cold periods, thermal stress and embrittlement enhance fracture along the rift. We propose that thermal stress and tidally driven gravitational stress produce rift seismicity with peak activity in the winter. en_US
dc.description.embargo 2019-11-23 en_US
dc.description.sponsorship NSF grants PLR‐1142518, 1141916, and 1142126 supported S. D. Olinger and D. A. Wiens, R. C. Aster, and A. A. Nyblade respectively. NSF grant PLR‐1246151 supported P. D. Bromirski, P. Gerstoft, and Z. Chen. NSF grant OPP‐1744856 and CAL‐DPR‐C1670002 also supported P. D. Bromirski. NSF grant PLR‐1246416 supported R. A. Stephen. The Incorporated Research Institutions for Seismology (IRIS) and the PASSCAL Instrument Center at New Mexico Tech provided seismic instruments and deployment support. The RIS seismic data (network code XH) are archived at the IRIS Data Management Center (http://ds.iris.edu/ds/nodes/dmc/). S. D. Olinger catalogued and located icequakes, analyzed seismicity and environmental forcing, and drafted the manuscript. D. A. Wiens and B. P. Lipovsky provided significant contributions to the analysis and interpretation of results and to the manuscript text. D. A. Wiens, R. C. Aster, A. A. Nyblade, R. A. Stephen, P. Gerstoft, and P. D. Bromirski collaborated to design and obtain funding for the deployment. D. A. Wiens, R. C. Aster, R. A. Stephen, P. Gerstoft, P. D. Bromirski, and Z. Chen deployed and serviced seismographs in Antarctica. All authors provided valuable feedback, comments, and edits to the manuscript text. Special thanks to Patrick Shore for guidance throughout the research process. en_US
dc.identifier.citation Olinger, S. D., Lipovsky, B. P., Wiens, D. A., Aster, R. C., Bromirski, P. D., Chen, Z., Gerstoft, P., Nyblade, A. A., & Stephen, R. A. (2019). Tidal and thermal stresses drive seismicity along a major ross ice shelf rift. Geophysical Research Letters, 46(12), 6644-6652. en_US
dc.identifier.doi 10.1029/2019GL082842
dc.identifier.uri https://hdl.handle.net/1912/24565
dc.publisher American Geophysical Union en_US
dc.relation.uri https://doi.org/10.1029/2019GL082842
dc.subject Ross Ice Shelf en_US
dc.subject Glacial seismology en_US
dc.subject Glaciology en_US
dc.subject Ice shelf rifting en_US
dc.subject Antarctica en_US
dc.title Tidal and thermal stresses drive seismicity along a major Ross Ice Shelf rift en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 377a63f3-50ce-44ec-82a4-e9367d1946f7
relation.isAuthorOfPublication 134535da-28c7-4698-9bc5-fe46da846104
relation.isAuthorOfPublication b2f79e21-57d3-4c49-b5e3-953e61b2d2c6
relation.isAuthorOfPublication d261e2ca-2306-4b3c-905c-a7c032577a75
relation.isAuthorOfPublication 9136c883-e4db-46c8-8d3b-d90d2d58be60
relation.isAuthorOfPublication d3df1a25-b38f-4d7a-8e4d-5b82d25391ee
relation.isAuthorOfPublication eaa17088-50a2-48f3-9194-532214401110
relation.isAuthorOfPublication 06431533-9369-4513-91c2-4c0f692bddb5
relation.isAuthorOfPublication 2a0945a2-434d-48b8-8ff2-aee333056b8e
relation.isAuthorOfPublication.latestForDiscovery 377a63f3-50ce-44ec-82a4-e9367d1946f7
Files
Original bundle
Now showing 1 - 5 of 5
Thumbnail Image
Name:
Olinger_et_al-2019-Geophysical_Research_Letters.pdf
Size:
4.47 MB
Format:
Adobe Portable Document Format
Description:
Article
Thumbnail Image
Name:
grl59051-sup-0001-2019gl082842-supporting_information_si-s01.pdf
Size:
2.57 MB
Format:
Adobe Portable Document Format
Description:
Supporting_Information_S1
Thumbnail Image
Name:
grl59051-sup-0002-2019gl082842-figure_si-s01.pdf
Size:
137.31 KB
Format:
Adobe Portable Document Format
Description:
Figure_S1
Thumbnail Image
Name:
grl59051-sup-0003-2019gl082842-figure_si-s02.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:
Figure_S2
Thumbnail Image
Name:
grl59051-sup-0004-2019gl082842-figure_si-s03.pdf
Size:
104.88 KB
Format:
Adobe Portable Document Format
Description:
Figure_S3
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: