Effect of fluorine on near-liquidus phase equilibria of an Fe–Mg rich basalt

Thumbnail Image
Date
2012-03-26
Authors
Filiberto, Justin
Wood, Justin
Dasgupta, Rajdeep
Shimizu, Nobumichi
Le, Loan
Treiman, Allan H.
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Halogens
Martian meteorites
Alkali basalts
Basalt crystallization
Phase equilibria
Fluorine
Abstract
Volatile species (H2O, CO2, F, Cl, etc) have important effects on the formation and crystallization history of basaltic magmas. Here, we have experimentally investigated the effects of F on phase equilibria of Fe-Mg-rich basalt. Our results show that fluorine has large effects on the liquidus temperature and the chemistry of crystallizing minerals. Compared to the F-free system, addition of ~2 wt.% F moves the olivine-pigeonite liquidus point down ~2 kbar and 95 °C (from 12 kbar, 1375 °C to 10 kbar, 1280 °C). With increasing fluorine concentrations, dramatically increases for both pyroxene and olivine, suggesting that fluorine in basaltic magmas complexes primarily with MgO. Complexing with MgO in the melt decreases its MgO activity, and forces the crystallizing minerals to greater Fe/Mg, and so increases . Models of basalt generation, where the magma is fluorine-rich, need to include the effect of not only water but fluorine on liquidus depression and minerals crystallizing/melting. Our results suggest that fluorine may significantly aid in the petrogenesis of silica-poor, alkali-rich magmas in the Earth and Mars.
Description
Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 312-313 (2012): 118-126, doi:10.1016/j.chemgeo.2012.04.015.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name