Estimation of mixed-layer depth from surface parameters Swain, D. Ali, M. M. Weller, Robert A. 2007-02-09T19:29:49Z 2007-02-09T19:29:49Z 2006-09
dc.description Author Posting. © Sears Foundation for Marine Research, 2006. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 64 (2006): 745-758, doi:10.1357/002224006779367285. en
dc.description.abstract Mixed layer depth (MLD) is an important oceanographic parameter. However, the lack of direct observations of MLD hampers both specification and investigation of its spatial and temporal variability. An important alternative to direct observation would be the ability to estimate MLD from surface parameters easily available from satellites. In this study, we demonstrate estimation of MLD using Artificial Neural Network methods and surface meteorology from a surface mooring in the Arabian Sea. The estimated MLD had a root mean square error of 7.36 m and a coefficient of determination (R2) of 0.94. About 67% (91%) of the estimates lie within ± 5 m (± 10 m) of the MLD determined from temperature sensors on the mooring. en
dc.format.extent 308260 bytes
dc.format.mimetype application/pdf
dc.identifier.citation Journal of Marine Research 64 (2006): 745-758 en
dc.identifier.doi 10.1357/002224006779367285
dc.language.iso en_US en
dc.publisher Sears Foundation for Marine Research en
dc.title Estimation of mixed-layer depth from surface parameters en
dc.type Article en
dspace.entity.type Publication
relation.isAuthorOfPublication 18b6fe87-7426-48e3-a371-659e7cf9ba9f
relation.isAuthorOfPublication 64acc4be-6b9f-4931-afdb-517d400130e3
relation.isAuthorOfPublication defcdad1-bc3e-4dad-a701-f1918f738445
relation.isAuthorOfPublication.latestForDiscovery 18b6fe87-7426-48e3-a371-659e7cf9ba9f
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
301.04 KB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
1.97 KB
Item-specific license agreed upon to submission