Radiolaria : flux, ecology, and taxonomy in the Pacific and Atlantic
Radiolaria : flux, ecology, and taxonomy in the Pacific and Atlantic
dc.contributor.author | Takahashi, Kozo | |
dc.contributor.editor | Honjo, Susumu | |
dc.date.accessioned | 2006-01-11T14:06:39Z | |
dc.date.available | 2006-01-11T14:06:39Z | |
dc.date.issued | 1991 | |
dc.description.abstract | Radiolarians setting through the oceanic water column were recovered from three stations (western tropical Atlantic, Station E; central tropical Pacific, Station P1; and Panama Basin, Station PB) using PARFLUX sediment traps in moored arrays at several depths. The taxonomic diversity of the radiolarian assemblages in the sediment traps was very high. A total of 420 taxa (including 23 new taxa) were found at the three stations; of these 208 taxa were found at Station E. The polycystine radiolarians generally reach the sea floor with little change in abundance or species composition, although slight skeletal dissolution occurs during their descent through the water column. The phaeodarian radiolarians, on the other hand, are largely dissolved within the water column; only a few species reach the sea-floor and these dissolve rapidly at the sediment-water interface. Most radiolarian skeletons sink as individuals through deep water columns without being incorporated into large biogenic aggregates. Because significant numbers of nassellarian and phaeodarian species are deep-water dwelling forms, the diversity of radiolarians increases with increasing depth in the mesopelagic zone. The vertical flux of the total radiolarians arriving at the trap depths (in x 103 individuals/m2/day) ranged from 16-24 at Station E, 0.6-17 at Station Pl, and 29-53 at Station PB. On the average 25% and 69% of the total radiolarian flux is transported by Spumellaria and Nassellaria, respectively, while 5% is carried by Phaeodaria. The supply of radiolarian silica (mg Si02/m2/day) to each trap depth ranged from 2.5-4.0 at Station E, 0.9-3.2 at Station Pl, and 5.7-10.4 at Station PB. The Radiolaria appear to be a significantly large portion of the Si02 flux in the > 63 μm size fraction and thus play an important role in the silica cycle. When the radiolarian fluxes at the three stations are compared with Holocene radiolarian accumulation rates in the same areas it became apparent that several percent or less of the fluxes are preserved in the sediment in all cases and the rest must be dissolved on the sea-floor. | en |
dc.format.extent | 40820795 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | 10.1575/1912/408 | |
dc.identifier.isbn | 188022402X | |
dc.identifier.uri | https://hdl.handle.net/1912/408 | |
dc.language.iso | en_US | en |
dc.publisher | Woods Hole Oceanographic Institution | en |
dc.relation.ispartofseries | Ocean Biocoenosis Series | en |
dc.relation.ispartofseries | 3 | en |
dc.title | Radiolaria : flux, ecology, and taxonomy in the Pacific and Atlantic | en |
dc.type | Book | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 645c8ac0-bdc8-4e55-8f5f-4ffef0bbad59 | |
relation.isAuthorOfPublication.latestForDiscovery | 645c8ac0-bdc8-4e55-8f5f-4ffef0bbad59 |