Salt marsh response to inlet switch‐induced increases in tidal inundation

Thumbnail Image
Date
2022-12-22
Authors
Yellen, Brian
Woodruff, Jonathan D.
Baranes, Hannah E.
Engelhart, Simon E.
Geywer, W. Rockwell
Randall, Noa
Griswold, Frances R.
Alternative Title
Date Created
Location
DOI
10.1029/2022JF006815
Related Materials
Replaces
Replaced By
Keywords
Salt marsh
Sediment
Tidal inundation
Sea level rise
Barrier beach
Compaction
Abstract
There is widespread concern that rapidly rising sea levels may drown salt marshes by exceeding the rate at which these important ecosystems can build elevation. A significant fraction of marshes reside within backbarrier estuaries, yet little attention has been paid to how changes in inlet geometry influences estuarine tides and marshes. In 1898, a coastal storm eroded a new inlet through the barrier beach that fronts the North‐South Rivers Estuary in Massachusetts, USA. The new inlet shortened the North River by 5.6 km and lengthened the South River channel by the same amount. Modern measurements of tidal attenuation suggest that channel shortening abruptly increased mean high tide along the North River by at least 30 cm. Foraminifera communities within North River marsh sediments indicated an environmental change from infrequent to frequent inundation at the time of the 1898 switch in inlet location, which supports this hypothesis. Increased mineral sediment deposition after the inlet switch played a dominant role in allowing marshes along the North River channel to adjust to greater inundation. Following the inlet switch, sediment accreted in North River marshes at 2–5 times the rate of sea level rise (SLR). The North River channel widened by an average of 18% relative to pre‐1898 conditions to accommodate the increased tidal prism. The role of mineral sediment accretion in making this marsh resilient to an abrupt increase in inundation depth highlights the importance of maintaining adequate sediment supplies in coastal regions as SLR accelerates.
Description
Author Posting. © American Geophysical Union, 2023. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 128(1), (2023): e2022JF006815. https://doi.org/10.1029/2022JF006815.
Embargo Date
Citation
Yellen, B., Woodruff, J. D., Baranes, H. E., Engelhart, S. E., Geyer, W. R., Randall, N., & Griswold, F. R. (2023). Salt marsh response to inlet switch-induced increases in tidal inundation. Journal of Geophysical Research: Earth Surface, 128(1), e2022JF006815.
Cruises
Cruise ID
Cruise DOI
Vessel Name