210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: Implications for POC export

dc.contributor.author Horowitz, Evan J.
dc.contributor.author Cochran, J. Kirk
dc.contributor.author Bacon, Michael P.
dc.contributor.author Hirschberg, David J.
dc.date.accessioned 2020-10-27T12:45:21Z
dc.date.available 2020-10-27T12:45:21Z
dc.date.issued 2020-07-07
dc.description © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, (2020): 103339, doi:10.1016/j.dsr.2020.103339. en_US
dc.description.abstract During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical “steady-state” (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic “steady-state” model shows increases from 0.5 ± 8.5 dpm m−2 d−1 to 68.2 ± 4.2 dpm m−2 d−1 over the ~one-month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (>0.8 μm) and particulate 210Po (>0.4 μm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the “steady state” 210Po fluxes yields POC export from the upper 150 m of 8.2 ± 1.5 mmol C m− 2 d−1 on 20 May and 6.0 ± 1.6 mmol C m−2 d−1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C m−2 d−1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol m−2 d−1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol m−2 d−1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered. en_US
dc.description.sponsorship We are grateful to T. Hammar and A. Fleer (WHOI) for assistance at sea and in the laboratory. This work was supported originally by National Science Foundation (United States) grant OCE-8819544 to JKC and more recently by OCE-1736591. We thank Stephen Thurston (American Museum of Natural History) for graphics assistance Robert Aller, Steven Beaupre, and two anonymous reviewers for helpful comments. en_US
dc.identifier.citation Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. (2020). 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, 103339. en_US
dc.identifier.doi 10.1016/j.dsr.2020.103339
dc.identifier.uri https://hdl.handle.net/1912/26338
dc.publisher Elsevier en_US
dc.relation.uri https://doi.org/10.1016/j.dsr.2020.103339
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ *
dc.subject Polonium-210 en_US
dc.subject Lead-210 en_US
dc.subject 210Po en_US
dc.subject 210Pb en_US
dc.subject North Atlantic en_US
dc.subject Spring bloom en_US
dc.subject POC flux en_US
dc.title 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: Implications for POC export en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication ef450c8e-5011-4aba-a7e2-c450242539ec
relation.isAuthorOfPublication 1e86705a-9970-438e-8a8a-31609c16ef4b
relation.isAuthorOfPublication e8ce4cba-66b6-4bc9-85ab-120fa56022c3
relation.isAuthorOfPublication 980fb400-5629-4425-800c-f5ec4f22ab2a
relation.isAuthorOfPublication.latestForDiscovery ef450c8e-5011-4aba-a7e2-c450242539ec
Files
Original bundle
Now showing 1 - 3 of 3
Thumbnail Image
Name:
1-s2.0-S0967063720301278-main.pdf
Size:
5.23 MB
Format:
Adobe Portable Document Format
Description:
Article
Thumbnail Image
Name:
1-s2.0-S0967063720301278-mmc1.pdf
Size:
151.47 KB
Format:
Adobe Portable Document Format
Description:
Multimedia_component_1
Thumbnail Image
Name:
1-s2.0-S0967063720301278-mmc2.pdf
Size:
67.38 KB
Format:
Adobe Portable Document Format
Description:
Multimedia_component_2
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: