Copepod manipulation of oil droplet size distribution

Alternative Title
Date Created
Location
DOI
10.1038/s41598-018-37020-9
Related Materials
Replaces
Replaced By
Keywords
Ecosystem ecology
Marine biology
Abstract
Oil spills are one of the most dangerous sources of pollution in aquatic ecosystems. Owing to their pivotal position in the food web, pelagic copepods can provide crucial intermediary transferring oil between trophic levels. In this study we show that the calanoid Paracartia grani can actively modify the size-spectrum of oil droplets. Direct manipulation through the movement of the feeding appendages and egestion work in concert, splitting larger droplets (Ø = 16 µm) into smaller ones (Ø = 4–8 µm). The copepod-driven change in droplet size distribution can increase the availability of oil droplets to organisms feeding on smaller particles, sustaining the transfer of petrochemical compounds among different compartments. These results raise the curtain on complex small-scale interactions which can promote the understanding of oil spills fate in aquatic ecosystems.
Description
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Uttieri, M., Nihongi, A., Hinow, P., Motschman, J., Jiang, H., Alcaraz, M., & Strickler, J. R. (2019). Copepod manipulation of oil droplet size distribution AU uttieri, M nihongi, A hinow, P motschman, J jiang, H alcaraz, M strickler, JR. Scientific Reports, 9, 547 , doi:10.1038/s41598-018-37020-9.
Embargo Date
Citation
Uttieri, M., Nihongi, A., Hinow, P., Motschman, J., Jiang, H., Alcaraz, M., & Strickler, J. R. (2019). Copepod manipulation of oil droplet size distribution AU uttieri, M nihongi, A hinow, P motschman, J jiang, H alcaraz, M strickler, JR. Scientific Reports, 9, 547
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International