Hydraulic control of flow in a multi-passage system connecting two basins

Thumbnail Image
Date
2022-04-05
Authors
Tan, Shuwen
Pratt, Lawrence J.
Voet, Gunnar
Cusack, Jesse M.
Helfrich, Karl R.
Alford, Matthew H.
Girton, James B.
Carter, Glenn S.
Alternative Title
Date Created
Location
DOI
10.1017/jfm.2022.212
Related Materials
Replaces
Replaced By
Keywords
Abstract
When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.
Description
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tan, S., Pratt, L. J., Voet, G., Cusack, J. M., Helfrich, K. R., Alford, M. H., Girton, J. B., & Carter, G. S. Hydraulic control of flow in a multi-passage system connecting two basins. Journal of Fluid Mechanics, 940, (2022): A8, https://doi.org/10.1017/jfm.2022.212.
Embargo Date
Citation
Tan, S., Pratt, L. J., Voet, G., Cusack, J. M., Helfrich, K. R., Alford, M. H., Girton, J. B., & Carter, G. S. (2022). Hydraulic control of flow in a multi-passage system connecting two basins. Journal of Fluid Mechanics, 940, A8.
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 4.0 International