Wave dissipation by muddy seafloors

Thumbnail Image
Date
2008-04-12
Authors
Elgar, Steve
Raubenheimer, Britt
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1029/2008GL033245
Related Materials
Replaces
Replaced By
Keywords
Wave dissipation
Muddy seafloor
Coastal processes
Abstract
Muddy seafloors cause tremendous dissipation of ocean waves. Here, observations and numerical simulations of waves propagating between 5- and 2-m water depths across the muddy Louisiana continental shelf are used to estimate a frequency- and depth-dependent dissipation rate function. Short-period sea (4 s) and swell (7 s) waves are shown to transfer energy to long-period (14 s) infragravity waves, where, in contrast with theories for fluid mud, the observed dissipation rates are highest. The nonlinear energy transfers are most rapid in shallow water, consistent with the unexpected strong increase of the dissipation rate with decreasing depth. These new results may explain why the southwest coast of India offers protection for fishing (and for the 15th century Portuguese fleet) only after large waves and strong currents at the start of the monsoon move nearshore mud banks from about 5- to 2-m water depth. When used with a numerical nonlinear wave model, the new dissipation rate function accurately simulates the large reduction in wave energy observed in the Gulf of Mexico.
Description
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L07611, doi:10.1029/2008GL033245.
Embargo Date
Citation
Geophysical Research Letters 35 (2008): L07611
Cruises
Cruise ID
Cruise DOI
Vessel Name