Sound scattering by spherical and elongated shelled bodies
Sound scattering by spherical and elongated shelled bodies
Date
1990-09
Authors
Stanton, Timothy K.
Linked Authors
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1121/1.400321
Related Materials
Replaces
Replaced By
Keywords
Scattering
Sound waves
Shells
Cylindrical configuration
Spherical configuration
Cross sections
Sound waves
Shells
Cylindrical configuration
Spherical configuration
Cross sections
Abstract
Describing the scattering of sound by elongated objects with high aspect ratios (ratio of length to diameter) usually involves great numerical difficulties. The recently developed deformed cylinder solution was shown to be increasingly accurate in the limit of very high aspect ratios (≥5:1) while requiring relatively low computation times and was applied to objects of constant composition [T. K. Stanton, ``Sound scattering by cylinders of finite length. III. Deformed cylinders,'' J. Acoust. Soc. Am. 86, 691–705 (1989)]. In this article, the approximate formulation is used to describe scattering by prolate spheroids, straight finite cylinders, and uniformly bent cylinders where the objects are composed of an elastic shell surrounded by fluid and filled with either a fluid or gas. The calculations are compared with those involving spherical shells based on the formulation derived in Goodman and Stern [J. Acoust. Soc. Am. 34, 338–344 (1962)]. The calculations are made over a wide range of frequencies and shell thicknesses (ranging from solid elastic objects to thin-shelled objects). Since the deformed cylinder formulation is most accurate for angles of incidence normal or near normal to the lengthwise axis, the calculations are limited to broadside incidence. The simulations show significant variations in the modal interference structure as the shell thickness and shape are varied. Comparisons are also made between predictions and laboratory data involving straight and bent finite-length cylindrical shells (stainless steel) with 3:1 aspect ratios and 52% shell thicknesses. The study not only shows reasonable agreement between the predictions and data, but also illustrates the dramatic change in scattering cross section due to the bend of the object (12 dB in this case).
Description
Author Posting. © Acoustical Society of America, 1990. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 88 (1990): 1619-1633, doi:10.1121/1.400321.
Embargo Date
Citation
Journal of the Acoustical Society of America 88 (1990): 1619-1633