A geostatistical framework for quantifying the imprint of mesoscale atmospheric transport on satellite trace gas retrievals

dc.contributor.author Torres, Anthony D.
dc.contributor.author Keppel-Aleks, Gretchen
dc.contributor.author Doney, Scott C.
dc.contributor.author Fendrock, Michaela
dc.contributor.author Luis, Kelly M. A.
dc.contributor.author De Mazière, Martine
dc.contributor.author Hase, Frank
dc.contributor.author Petri, Christof
dc.contributor.author Pollard, David
dc.contributor.author Roehl, Coleen M.
dc.contributor.author Sussmann, Ralf
dc.contributor.author Velazco, Voltaire A.
dc.contributor.author Warneke, Thorsten
dc.contributor.author Wunch, Debra
dc.date.accessioned 2020-02-11T14:13:55Z
dc.date.available 2020-02-11T14:13:55Z
dc.date.issued 2019-07-29
dc.description Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres 124 (17-18), (2019): 9773-9795, doi: 10.1029/2018JD029933. en_US
dc.description.abstract National Aeronautics and Space Administration's Orbiting Carbon Observatory‐2 (OCO‐2) satellite provides observations of total column‐averaged CO2 mole fractions (XCO2 ) at high spatial resolution that may enable novel constraints on surface‐atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to optimize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks depends on key inputs, including spatially and temporally dense CO2 observations and reliable representations of atmospheric transport. Since XCO2 observations are sensitive to both synoptic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts substantial variations in these data and must be either resolved explicitly by the atmospheric transport model or accounted for within the error covariance budget provided to inverse frameworks. Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along‐track OCO‐2 soundings. We compare high‐pass‐filtered (<250 km, spatial scales that primarily isolate mesoscale or finer‐scale variations) along‐track spatial variability in XCO2 and XH2O from OCO‐2 tracks to temporal synoptic and mesoscale variability from ground‐based XCO2 and XH2O observed by nearby Total Carbon Column Observing Network sites. Mesoscale atmospheric transport is found to be the primary driver of along‐track, high‐frequency variability for OCO‐2 XH2O. For XCO2 , both mesoscale transport variability and spatially coherent bias associated with other elements of the OCO‐2 retrieval state vector are important drivers of the along‐track variance budget. en_US
dc.description.sponsorship The authors thank the leadership and participants of the NASA OCO‐2 mission and acknowledge financial support from NASA Award NNX15AH13G. A.D. Torres also acknowledges support from the NASA Earth and Space Science Fellowship Award 80NSSC17K0382. We thank TCCON for providing observations. We thank A. Jacobson and the National Oceanographic and Atmospheric Administration Earth System Research Laboratory in Boulder, CO, for providing CarbonTracker CT2017 data, available online (http://carbontracker.noaa.gov). We thank S. Wofsy for providing HIPPO data, funded by the National Science Foundation and NOAA and available online (https://www.eol.ucar.edu/field_projects/hippo). The TCCON Principal Investigators acknowledge funding from their national funding organizations. TCCON data were obtained from the archive at the https://tccondata.org Web site. NARR data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site (https://www.esrl.noaa.gov/psd/). en_US
dc.identifier.citation Torres, A. D., Keppel-Aleks, G., Doney, S. C., Fendrock, M., Luis, K., De Maziere, M., Hase, F., Petri, C., Pollard, D. F., Roehl, C. M., Sussmann, R., Velazco, V. A., Warneke, T., & Wunch, D. (2019). A geostatistical framework for quantifying the imprint of mesoscale atmospheric transport on satellite trace gas retrievals. Journal of Geophysical Research-Atmospheres, 124 (17-18), 9773-9795. en_US
dc.identifier.doi 10.1029/2018JD029933
dc.identifier.uri https://hdl.handle.net/1912/25356
dc.publisher American Geophysical Union en_US
dc.relation.uri https://doi.org/10.1029/2018JD029933
dc.subject Atmospheric transport en_US
dc.subject Greenhouse gases en_US
dc.subject CO2 en_US
dc.subject Mesoscale en_US
dc.subject OCO‐2 en_US
dc.subject TCCON en_US
dc.title A geostatistical framework for quantifying the imprint of mesoscale atmospheric transport on satellite trace gas retrievals en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 6a4d121f-38ad-4b2b-b8b5-3b91b94cdb1e
relation.isAuthorOfPublication 6a426642-3376-4d0c-ae5f-64cffe35cb2f
relation.isAuthorOfPublication 9cbd2f82-5bba-42b3-80e5-7fad279adb01
relation.isAuthorOfPublication 45476822-bfc7-40f7-8a24-792f1847263a
relation.isAuthorOfPublication 87be0e74-623f-4fe6-bd9f-adf2e436be5c
relation.isAuthorOfPublication 6ed5473b-e5c3-4da1-82c1-bdea3e110a75
relation.isAuthorOfPublication 6b0b1700-460b-48ee-b366-ed5bae8bef61
relation.isAuthorOfPublication 437c6ccf-eb70-4485-9ff0-e5c46a8ad412
relation.isAuthorOfPublication 64cea696-80cf-4ba3-adad-9b11643bd102
relation.isAuthorOfPublication 1d38f2f4-5014-4ed3-abd8-1eba82776480
relation.isAuthorOfPublication ab296df3-42c9-46d3-b3a7-c0b09840e1f7
relation.isAuthorOfPublication 8cf414a9-6863-4e24-bb96-bf68c9f12241
relation.isAuthorOfPublication a7d26dd3-1829-43e3-92e9-bf70c4d42268
relation.isAuthorOfPublication 0ca578c1-14a4-4b42-9913-a4210c1e1eef
relation.isAuthorOfPublication.latestForDiscovery 6a4d121f-38ad-4b2b-b8b5-3b91b94cdb1e
Files
Original bundle
Now showing 1 - 2 of 2
Thumbnail Image
Name:
Torres_et_al-2019-Journal_of_Geophysical_Research__Atmospheres.pdf
Size:
3.05 MB
Format:
Adobe Portable Document Format
Description:
Article
Thumbnail Image
Name:
jgrd55658-sup-0001-2018jd029933-si.pdf
Size:
715.71 KB
Format:
Adobe Portable Document Format
Description:
Supporting_Information_S1
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: