Eddy–mean flow interaction in the Kuroshio Extension region

Thumbnail Image
Waterman, Stephanie N.
Hogg, Nelson G.
Jayne, Steven R.
Linked Authors
Alternative Title
Date Created
Related Materials
Replaced By
Boundary currents
The authors use data collected by a line of tall current meter moorings deployed across the axis of the Kuroshio Extension (KE) jet at the location of maximum time-mean eddy kinetic energy to characterize the mean jet structure, the eddy variability, and the nature of eddy–mean flow interactions observed during the Kuroshio Extension System Study (KESS). A picture of the 2-yr record mean jet structure is presented in both geographical and stream coordinates, revealing important contrasts in jet strength, width, vertical structure, and flanking recirculation structure. Eddy variability observed is discussed in the context of some of its various sources: jet meandering, rings, waves, and jet instability. Finally, various scenarios for eddy–mean flow interaction consistent with the observations are explored. It is shown that the observed cross-jet distributions of Reynolds stresses at the KESS location are consistent with wave radiation away from the jet, with the sense of the eddy feedback effect on the mean consistent with eddy driving of the observed recirculations. The authors consider these results in the context of a broader description of eddy–mean flow interactions in the larger KE region using KESS data in combination with in situ measurements from past programs in the region and satellite altimetry. This demonstrates important consistencies in the along-stream development of time-mean and eddy properties in the KE with features of an idealized model of a western boundary current (WBC) jet used to understand the nature and importance of eddy–mean flow interactions in WBC jet systems.
Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1182–1208, doi:10.1175/2010JPO4564.1.
Embargo Date
Journal of Physical Oceanography 41 (2011): 1182–1208
Cruise ID
Cruise DOI
Vessel Name