The fate of North Atlantic Subtropical Mode Water in the FLAME model

Thumbnail Image
Date
2014-05
Authors
Gary, Stefan F.
Lozier, M. Susan
Kwon, Young-Oh
Park, Jong Jin
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1175/JPO-D-13-0202.1
Related Materials
Replaces
Replaced By
Keywords
Circulation/ Dynamics
Lagrangian circulation/transport
Potential vorticity
Atm/Ocean Structure/ Phenomena
Water masses
Abstract
North Atlantic Subtropical Mode Water, also known as Eighteen Degree Water (EDW), has the potential to store heat anomalies through its seasonal cycle: the water mass is in contact with the atmosphere in winter, isolated from the surface for the rest of the year, and reexposed the following winter. Though there has been recent progress in understanding EDW formation processes, an understanding of the fate of EDW following formation remains nascent. Here, particles are launched within the EDW of an eddy-resolving model, and their fate is tracked as they move away from the formation region. Particles in EDW have an average residence time of ~10 months, they follow the large-scale circulation around the subtropical gyre, and stratification is the dominant criteria governing the exit of particles from EDW. After sinking into the layers beneath EDW, particles are eventually exported to the subpolar gyre. The spreading of particles is consistent with the large-scale potential vorticity field, and there are signs of a possible eddy-driven mean flow in the southern portion of the EDW domain. The authors also show that property anomalies along particle trajectories have an average integral time scale of ~3 months for particles that are in EDW and ~2 months for particles out of EDW. Finally, it is shown that the EDW turnover time for the model in an Eulerian frame (~3 yr) is consistent with the turnover time computed from the Lagrangian particles provided that the effects of exchange between EDW and the surrounding waters are included.
Description
Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1354–1371, doi:10.1175/JPO-D-13-0202.1.
Embargo Date
Citation
Journal of Physical Oceanography 44 (2014): 1354–1371
Cruises
Cruise ID
Cruise DOI
Vessel Name