Radium isotopes across the Arctic Ocean show time scales of water mass ventilation and increasing shelf inputs

dc.contributor.author Rutgers van der Loeff, Michiel M.
dc.contributor.author Kipp, Lauren
dc.contributor.author Charette, Matthew A.
dc.contributor.author Moore, Willard S.
dc.contributor.author Black, Erin E.
dc.contributor.author Stimac, Ingrid
dc.contributor.author Charkin, Alexander
dc.contributor.author Bauch, Dorothea
dc.contributor.author Valk, Ole
dc.contributor.author Karcher, Michael
dc.contributor.author Krumpen, Thomas
dc.contributor.author Casacuberta, Nuria
dc.contributor.author Smethie, William M.
dc.contributor.author Rember, Robert
dc.date.accessioned 2018-09-07T15:52:16Z
dc.date.available 2018-09-07T15:52:16Z
dc.date.issued 2018-07-13
dc.description © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 4853-4873, doi:10.1029/2018JC013888. en_US
dc.description.abstract The first full transarctic section of 228Ra in surface waters measured during GEOTRACES cruises PS94 and HLY1502 (2015) shows a consistent distribution with maximum activities in the transpolar drift. Activities in the central Arctic have increased from 2007 through 2011 to 2015. The increased 228Ra input is attributed to stronger wave action on shelves resulting from a longer ice‐free season. A concomitant decrease in the 228Th/228Ra ratio likely results from more rapid transit of surface waters depleted in 228Th by scavenging over the shelf. The 228Ra activities observed in intermediate waters (<1,500 m) in the Amundsen Basin are explained by ventilation with shelf water on a time scale of about 15–18 years, in good agreement with estimates based on SF6 and 129I/236U. The 228Th excess below the mixed layer up to 1,500 m depth can complement 234Th and 210Po as tracers of export production, after correction for the inherent excess resulting from the similarity of 228Ra and 228Th decay times. We show with a Th/Ra profile model that the 228Th/228Ra ratio below 1,500 m is inappropriate for this purpose because it is a delicate balance between horizontal supply of 228Ra and vertical flux of particulate 228Th. The accumulation of 226Ra in the deep Makarov Basin is not associated with an accumulation of Ba and can therefore be attributed to supply from decay of 230Th in the bottom sediment. We estimate a ventilation time of 480 years for the deep Makarov‐Canada Basin, in good agreement with previous estimates using other tracers. en_US
dc.description.sponsorship U.S. National Science Foundation Grant Numbers: OCE‐1458305, OCE‐1458424; US NSF Grant Number: OCE‐1433922 en_US
dc.identifier.citation Journal of Geophysical Research: Oceans 123 (2018): 4853-4873 en_US
dc.identifier.doi 10.1029/2018JC013888
dc.identifier.uri https://hdl.handle.net/1912/10556
dc.language.iso en_US en_US
dc.publisher John Wiley & Sons en_US
dc.relation.uri https://doi.org/10.1029/2018JC013888
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ *
dc.subject Radium‐228 en_US
dc.subject Thorium‐228 en_US
dc.subject Arctic Ocean en_US
dc.subject Transpolar drift en_US
dc.subject GEOTRACES en_US
dc.title Radium isotopes across the Arctic Ocean show time scales of water mass ventilation and increasing shelf inputs en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 1393f438-cb22-4862-a86d-da859cc1561a
relation.isAuthorOfPublication 296dc0c9-1fe4-41f8-b75a-af01f3fe0d8c
relation.isAuthorOfPublication 22204a17-5356-4e8b-a3dc-d721acb033af
relation.isAuthorOfPublication 37dd0f38-3114-4965-98ba-dc0e98ab943e
relation.isAuthorOfPublication 9fc70c40-856e-434a-88dd-5f0d0e54289d
relation.isAuthorOfPublication 2764e515-539b-49a9-b6b5-da226048180a
relation.isAuthorOfPublication a8acab66-7aa0-43e9-84e7-758fb8cda3ef
relation.isAuthorOfPublication 537f50b0-0c9a-4c1a-af4e-da54c0f9db09
relation.isAuthorOfPublication 147a5bb7-5377-4adf-9f3f-e45dea0a59a2
relation.isAuthorOfPublication a497c85b-d2da-46b2-ba3d-7bc8033a5933
relation.isAuthorOfPublication c41ab055-7256-4f3b-93ad-eff6136064d4
relation.isAuthorOfPublication bf7be9fd-616b-4474-a914-c6f8408b362c
relation.isAuthorOfPublication b68d4fa7-9f12-4ddc-8046-7662abb44f1b
relation.isAuthorOfPublication a130baa0-22df-48af-aa9d-1b6805dc0a31
relation.isAuthorOfPublication.latestForDiscovery 1393f438-cb22-4862-a86d-da859cc1561a
Files
Original bundle
Now showing 1 - 5 of 8
Thumbnail Image
Name:
Loeff_et_al-2018-Journal_of_Geophysical_Research%3A_Oceans.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
Description:
Article
Thumbnail Image
Name:
2018jc013888-sup-0001-text_si-s01.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Description:
Supporting Information S1
No Thumbnail Available
Name:
2018jc013888-sup-0002-table_si-s01.xlsx
Size:
35.27 KB
Format:
Microsoft Excel
Description:
Table S1
No Thumbnail Available
Name:
2018jc013888-sup-0003-table_si-s02.xlsx
Size:
22.57 KB
Format:
Microsoft Excel
Description:
Table S2
No Thumbnail Available
Name:
2018jc013888-sup-0004-table_si-s03.xlsx
Size:
21.28 KB
Format:
Microsoft Excel
Description:
Table S3a
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: