Giant reverse transcriptase-encoding transposable elements at telomeres

Thumbnail Image
Date
2017-05
Authors
Arkhipova, Irina R.
Yushenova, Irina A.
Rodriguez, Fernando
Linked Authors
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Retrotransposons
Bdelloid rotifers
Hammerhead ribozymes
Horizontal gene transfer
Abstract
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3’-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple co-oriented ORFs, including DEDDy 3’-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of inter-family variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer.
Description
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 34 (2017): 2245–2257, doi:10.1093/molbev/msx159.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name