How is the ocean filled?

Thumbnail Image
Date
2011-03-23
Authors
Gebbie, Geoffrey A.
Huybers, Peter
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1029/2011GL046769
Related Materials
Replaces
Replaced By
Keywords
Water masses
Deep-water formation
Physical oceanography
Ocean pathways
Inverse methods
Steady-state circulation
Abstract
The ocean surface rapidly exchanges heat, freshwater, and gases with the atmosphere, but once water sinks into the ocean interior, the inherited properties of seawater are closely conserved. Previous water-mass decompositions have described the oceanic interior as being filled by just a few different property combinations, or water masses. Here we apply a new inversion technique to climatological tracer distributions to find the pathways by which the ocean is filled from over 10,000 surface regions, based on the discretization of the ocean surface at 2° by 2° resolution. The volume of water originating from each surface location is quantified in a global framework, and can be summarized by the estimate that 15% of the surface area fills 85% of the ocean interior volume. Ranked from largest to smallest, the volume contributions scaled by surface area follow a power-law distribution with an exponent of −1.09 ± 0.03 that appears indicative of the advective-diffusive filling characteristics of the ocean circulation, as demonstrated using a simple model. This work quantifies the connection between the surface and interior ocean, allowing insight into ocean composition, atmosphere-ocean interaction, and the transient response of the ocean to a changing climate.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06604, doi:10.1029/2011GL046769.
Embargo Date
Citation
Geophysical Research Letters 38 (2011): L06604
Cruises
Cruise ID
Cruise DOI
Vessel Name