Rosenheim Brad E.

No Thumbnail Available
Last Name
Rosenheim
First Name
Brad E.
ORCID

Search Results

Now showing 1 - 13 of 13
  • Article
    Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed : effects of dam construction and land use change on regional inputs
    (John Wiley & Sons, 2015-10-10) Bianchi, Thomas S. ; Galy, Valier ; Rosenheim, Brad E. ; Shields, Michael ; Cui, Xingqian ; Van Metre, Peter
    We use a dated sediment core from Lake Whittington (USA) in the lower Mississippi River to reconstruct linkages in the carbon cycling and fluvial sediment dynamics over the past 80 years. Organic carbon (OC) sources were characterized using bulk (δ13C, ramped pyrolysis-oxidation (PyrOx) 14C, δ15N, and TN:OC ratios) and compound-specific (lignin phenols and fatty acids, including δ13C and 14C of the fatty acids) analyses. Damming of the Missouri River in the 1950s, other hydrological modifications to the river, and soil conservation measures resulted in reduced net OC export, in spite of increasing OC concentrations. Decreasing δ13C values coincided with increases in δ15N, TN:OC ratios, long-chain fatty acids, and lignin-phenol concentrations, suggesting increased inputs of soil-derived OC dominated by C3 vegetation, mainly resulting from changes in farming practices and crop distribution. However, ramped PyrOx 14C showed no discernible differences downcore in thermochemical stability, indicating a limited impact on soil OC turnover.
  • Preprint
    Accelerator mass spectrometry 14C determination in CO2 produced from laser decomposition of aragonite
    ( 2008-08-29) Rosenheim, Brad E. ; Thorrold, Simon R. ; Roberts, Mark L.
    Determination of 14C in aragonite (CaCO3) decomposed thermally to CO2 using an yttrium‐aluminum‐garnet doped neodymium laser is reported. Laser decomposition accelerator mass spectrometer (LD‐AMS) measurements reproduce AMS determinations of 14C from conventional reaction of aragonite with concentrated phosphoric acid. The lack of significant differences between these sets of measurements indicate that LD‐AMS radiocarbon dating can overcome the significant fractionation that has been observed during stable isotope (C and O) laser decomposition analysis of different carbonate minerals. The laser regularly converted nearly 30% of material removed to CO2 despite being optimized for ablation, where laser energy breaks material apart rather than chemically altering it. These results illustrate promise for using laser decomposition on the front‐end of AMS systems that directly measure CO2 gas. The feasibility of such measurements depends on 1. the improvement of material removal and/or CO2 generation efficiency of the laser decomposition system and 2. the ionization efficiency of AMS systems measuring continuously flowing CO2.
  • Article
    Salinity change in the subtropical Atlantic : secular increase and teleconnections to the North Atlantic Oscillation
    (American Geophysical Union, 2005-01-21) Rosenheim, Brad E. ; Swart, Peter K. ; Thorrold, Simon R. ; Eisenhauer, Anton ; Willenz, Philippe
    Recent studies comparing shipboard data between the 1950's and the 1990's have shown significant, heterogeneous adjustments of the temperature-salinity structure of the N. Atlantic Ocean. Here, we present proxy records of temperature and salinity from aragonite sclerosponge skeletons, extending existing records of the Salinity Maximum Waters (SMW) of the N. Atlantic back to 1890. These proxy records show secular temperature increases of 1.6–2.0°C, higher than published global averages, and salinity increases of 0.35–0.5 psu, smaller than short-term secular trends recently measured. Salinity reconstructions vary more significantly on the decadal scale, showing changes that are related to low-frequency variations of the North Atlantic Oscillation (NAO). On both secular and decadal time scales, the records indicate significant thermohaline changes in the SMW, either via forcing at the surface or increasing depths of density surfaces in the Bahamas.
  • Article
    Direct measurement of riverine particulate organic carbon age structure
    (American Geophysical Union, 2012-10-03) Rosenheim, Brad E. ; Galy, Valier
    Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.
  • Article
    Antarctic sediment chronology by programmed-temperature pyrolysis : methodology and data treatment
    (American Geophysical Union, 2008-04-02) Rosenheim, Brad E. ; Day, Mary Beth ; Domack, Eugene ; Schrum, Heather ; Benthien, Albert ; Hayes, John M.
    We report a detailed programmed-temperature pyrolysis/combustion methodology for radiocarbon (14C) dating of Antarctic sub-ice shelf sediments. The method targets the autochthonous organic component in sediments that contain a distribution of acid-insoluble organic components from several sources of different ages. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves by yielding maximum age constraints significantly younger than bulk radiocarbon dates from the same sediment horizons. The method proves adequate in determining isotope ratios of the pre-aged carbon end-member; however, the isotopic compositions of the low-temperature measurements indicate that no samples completely avoided mixing with some proportion of pre-aged organic material. Dating the unresolved but desired young end-member must rely on indirect methods, but a simple mixing model cannot be developed without knowledge of the sedimentation rate or comparable constraints. A mathematical approach allowing for multiple mixing components yields a maximum likelihood age, a first-order approximation of the relative proportion of the autochthonous component, and the temperature at which allochthonous carbon begins to volatilize and mix with the autochthonous component. It is likely that our estimation of the cutoff temperature will be improved with knowledge of the pyrolysis kinetics of the major components. Chronology is improved relative to bulk acid-insoluble organic material ages from nine temperature interval dates down to two, but incorporation of inherently more pre-aged carbon in the first division becomes more apparent with fewer and larger temperature intervals.
  • Preprint
    Software development for continuous-gas-flow AMS
    ( 2007-09) von Reden, Karl F. ; Roberts, Mark L. ; Jenkins, William J. ; Rosenheim, Brad E. ; McNichol, Ann P. ; Schneider, Robert J.
    The National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) Facility at Woods Hole Oceanographic Institution is presently completing installation of a novel continuous-flow AMS system. A multi-year development of an AMS microwave gas ion source in collaboration with Atomic Energy Canada Limited (AECL), Chalk River, has preceded this final step of an implementation that is expected to add a new dimension to 14C AMS. National Instruments, NIM, and CAMAC modules have been programmed with LabVIEW on a Windows XP platform to form the basis for data acquisition. In this paper we discuss possible applications and include simulations of expected data acquisition scenarios like real-time AMS analysis of chromatograms. Particular attention is given to issues of synchronization between rapidly changing input amplitudes and signal processing cycles in hardware and software.
  • Article
    Evidence of multidecadal salinity variability in the eastern tropical North Atlantic
    (American Geophysical Union, 2006-08-17) Moses, Christopher S. ; Swart, Peter K. ; Rosenheim, Brad E.
    Ocean circulation and global climate are strongly influenced by seawater density, which is itself controlled by salinity and temperature. Although adequate instrumental sea-surface temperature (SST) records exist for most of the surface oceans over the past 100-150 years, records of salinity really only exist for the last 40-50 years. Here we show that longer proxy records from corals (Siderastrea radians) in the eastern tropical North Atlantic are dominated by multi-decadal variations in salinity which are correlated with the relationship between SST and the North Atlantic Oscillation (NAO) over the course of the 20th century. The data reveal an increase in eastern tropical North Atlantic salinity of +0.5 psu between about 1950-1990. Rather than a monotonic secular increase, as indicated by some instrumental records, the pre-instrumental coral proxy records presented here suggest that salinity in the tropical North Atlantic is periodic on a decadal to multi-decadal scale.
  • Preprint
    Progress on a gas-accepting ion source for continuous-flow accelerator mass spectrometry
    ( 2007-02) Roberts, Mark L. ; Schneider, Robert J. ; von Reden, Karl F. ; Wills, J. S. C. ; Han, Baoxi ; Hayes, John M. ; Rosenheim, Brad E. ; Jenkins, William J.
    A gas-accepting microwave-plasma ion source is being developed for continuous-flow Accelerator Mass Spectrometry (AMS). Characteristics of the ion source will be presented. Schemes for connecting a gas or liquid chromatograph to the ion source will also be discussed.
  • Article
    Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations
    (Cambridge University Press, 2021-01-08) Priscu, John C. ; Kalin, Jonas ; Winans, John ; Campbell, Timothy ; Siegfried, Matthew R. ; Skidmore, Mark ; Dore, John E. ; Leventer, Amy ; Harwood, David M. ; Duling, Dennis ; Zook, Robert ; Burnett, Justin ; Gibson, Dar ; Krula, Edward ; Mironov, Anatoly ; McManis, James ; Roberts, Graham ; Rosenheim, Brad E. ; Christner, Brent C. ; Kasic, Kathy ; Fricker, Helen A. ; Lyons, W. Berry ; Barker, Joel ; Bowling, Mark ; Collins, Billy ; Davis, Christina ; Gagnon, Alan R. ; Gardner, Christopher B. ; Gustafson, Chloe ; Kim, Ok-Sun ; Li, Wei ; Michaud, Alex ; Patterson, Molly O. ; Tranter, Martyn ; Venturelli, Ryan ; Vick-Majors, Trista ; Elsworth, Cooper
    The Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.
  • Article
    A high-performance 14C accelerator mass spectrometry system
    (Dept. of Geosciences, University of Arizona, 2010-08) Roberts, Mark L. ; Burton, Joshua R. ; Elder, Kathryn L. ; Longworth, Brett E. ; McIntyre, Cameron P. ; von Reden, Karl F. ; Han, Baoxi ; Rosenheim, Brad E. ; Jenkins, William J. ; Galutschek, Ernst ; McNichol, Ann P.
    A new and unique radiocarbon accelerator mass spectrometry (AMS) facility has been constructed at the Woods Hole Oceanographic Institution. The defining characteristic of the new system is its large-gap optical elements that provide a larger-than-standard beam acceptance. Such a system is ideally suited for high-throughput, high-precision measurements of 14C. Details and performance of the new system are presented.
  • Article
    Petrocarbon evolution: Ramped pyrolysis/oxidation and isotopic studies of contaminated oil sediments from the Deepwater Horizon oil spill in the Gulf of Mexico.
    (Public Library of Science, 2019-02-28) Rogers, Kelsey L. ; Bosman, Samantha H. ; Lardie Gaylord, Mary C. ; McNichol, Ann P. ; Rosenheim, Brad E. ; Montoya, Joseph P. ; Chanton, Jeffrey P.
    Hydrocarbons released during the Deepwater Horizon (DWH) oil spill weathered due to exposure to oxygen, light, and microbes. During weathering, the hydrocarbons’ reactivity and lability was altered, but it remained identifiable as “petrocarbon” due to its retention of the distinctive isotope signatures (14C and 13C) of petroleum. Relative to the initial estimates of the quantity of oil-residue deposited in Gulf sediments based on 2010–2011 data, the overall coverage and quantity of the fossil carbon on the seafloor has been attenuated. To analyze recovery of oil contaminated deep-sea sediments in the northern Gulf of Mexico we tracked the carbon isotopic composition (13C and 14C, radiocarbon) of bulk sedimentary organic carbon through time at 4 sites. Using ramped pyrolysis/oxidation, we determined the thermochemical stability of sediment organic matter at 5 sites, two of these in time series. There were clear differences between crude oil (which decomposed at a lower temperature during ramped oxidation), natural hydrocarbon seep sediment (decomposing at a higher temperature; Δ14C = -912‰) and our control site (decomposing at a moderate temperature; Δ14C = -189‰), in both the stability (ability to withstand ramped temperatures in oxic conditions) and carbon isotope signatures. We observed recovery toward our control site bulk Δ14C composition at sites further from the wellhead in ~4 years, whereas sites in closer proximity had longer recovery times. The thermographs also indicated temporal changes in the composition of contaminated sediment, with shifts towards higher temperature CO2 evolution over time at a site near the wellhead, and loss of higher temperature CO2 peaks at a more distant site.
  • Article
    Clumped isotope composition of cold-water corals : a role for vital effects?
    (Elsevier, 2016-02-02) Spooner, Peter T. ; Guo, Weifu ; Robinson, Laura F. ; Thiagarajan, Nivedita ; Hendry, Katharine R. ; Rosenheim, Brad E. ; Leng, Melanie J.
    The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes ‘clumping’ into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope ‘vital effects’ are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals’ calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.
  • Article
    Constraints on the timing and extent of deglacial grounding line retreat in West Antarctica
    (American Geophysical Union, 2023-04-26) Venturelli, Ryan A. ; Boehman, Brenna ; Davis, Christina ; Hawkings, Jon R. ; Johnston, Sarah E. ; Gustafson, Chloe D. ; Michaud, Alexander B. ; Mosbeux, Cyrille ; Siegfried, Matthew R. ; Vick‐Majors, Trista J. ; Galy, Valier ; Spencer, Robert G. M. ; Warny, Sophie ; Christner, Brent C. ; Fricker, Helen A. ; Harwood, David M. ; Leventer, Amy ; Priscu, John C. ; Rosenheim, Brad E.
    Projections of Antarctica's contribution to future sea level rise are associated with significant uncertainty, in part because the observational record is too short to capture long‐term processes necessary to estimate ice mass changes over societally relevant timescales. Records of grounding line retreat from the geologic past offer an opportunity to extend our observations of these processes beyond the modern record and to gain a more comprehensive understanding of ice‐sheet change. Here, we present constraints on the timing and inland extent of deglacial grounding line retreat in the southern Ross Sea, Antarctica, obtained via direct sampling of a subglacial lake located 150 km inland from the modern grounding line and beneath >1 km of ice. Isotopic measurements of water and sediment from the lake enabled us to evaluate how the subglacial microbial community accessed radiocarbon‐bearing organic carbon for energy, as well as where it transferred carbon metabolically. Using radiocarbon as a natural tracer, we found that sedimentary organic carbon was microbially translocated to dissolved carbon pools in the subglacial hydrologic system during the 4.5‐year period of water accumulation prior to our sampling. This finding indicates that the grounding line along the Siple Coast of West Antarctica retreated more than 250 km inland during the mid‐Holocene (6.3 ± 1.0 ka), prior to re‐advancing to its modern position.