Clark
Christopher W.
Clark
Christopher W.
No Thumbnail Available
Search Results
Now showing
1 - 6 of 6
-
ArticleLong-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014(Nature Publishing Group, 2017-10-18) Davis, Genevieve E. ; Baumgartner, Mark F. ; Bonnell, Julianne M. ; Bell, Joel ; Berchok, Catherine L. ; Bort Thornton, Jacqueline ; Brault, Solange ; Buchanan, Gary ; Charif, Russell A. ; Cholewiak, Danielle ; Clark, Christopher W. ; Corkeron, Peter ; Delarue, Julien ; Dudzinski, Kathleen ; Hatch, Leila ; Hildebrand, John ; Hodge, Lynne ; Klinck, Holger ; Kraus, Scott D. ; Martin, Bruce ; Mellinger, David K. ; Moors-Murphy, Hilary ; Nieukirk, Sharon ; Nowacek, Douglas P. ; Parks, Susan E. ; Read, Andrew J. ; Rice, Aaron N. ; Risch, Denise ; Širović, Ana ; Soldevilla, Melissa ; Stafford, Kathleen M. ; Stanistreet, Joy ; Summers, Erin ; Todd, Sean ; Warde, Ann M. ; Van Parijs, Sofie M.Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.
-
ArticleSpatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea(Inter-Research, 2016-07-18) Thomisch, Karolin ; Boebel, Olaf ; Clark, Christopher W. ; Hagen, Wilhelm ; Spiesecke, Stefanie ; Zitterbart, Daniel ; Van Opzeeland, IlseDistribution and movement patterns of Antarctic blue whales Balaenoptera musculus intermedia at large temporal and spatial scales are still poorly understood. The objective of this study was to explore spatio-temporal distribution patterns of Antarctic blue whales in the Atlantic sector of the Southern Ocean, using passive acoustic monitoring data. Multi-year data were collected between 2008 and 2013 by 11 recorders deployed in the Weddell Sea and along the Greenwich meridian. Antarctic blue whale Z-calls were detected via spectrogram cross-correlation. A Blue Whale Index was developed to quantify the proportion of time during which acoustic energy from Antarctic blue whales dominated over background noise. Our results show that Antarctic blue whales were acoustically present year-round, with most call detections between January and April. During austral summer, the number of detected calls peaked synchronously throughout the study area in most years, and hence, no directed meridional movement pattern was detectable. During austral winter, vocalizations were recorded at latitudes as high as 69°S, with sea ice cover exceeding 90%, suggesting that some Antarctic blue whales overwinter in Antarctic waters. Polynyas likely serve as an important habitat for baleen whales during austral winter, providing food and reliable access to open water for breathing. Overall, our results support increasing evidence of a complex and non-obligatory migratory behavior of Antarctic blue whales, potentially involving temporally and spatially dynamic migration routes and destinations, as well as variable timing of migration to and from the feeding grounds.
-
ArticleExploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data(Wiley, 2020-05-25) Davis, Genevieve E. ; Baumgartner, Mark F. ; Corkeron, Peter ; Bell, Joel ; Berchok, Catherine L. ; Bonnell, Julianne M. ; Bort Thornton, Jacqueline ; Brault, Solange ; Buchanan, Gary ; Cholewiak, Danielle ; Clark, Christopher W. ; Delarue, Julien ; Hatch, Leila ; Klinck, Holger ; Kraus, Scott D. ; Martin, Bruce ; Mellinger, David K. ; Moors-Murphy, Hilary ; Nieukirk, Sharon ; Nowacek, Douglas P. ; Parks, Susan E. ; Parry, Dawn ; Pegg, Nicole ; Read, Andrew J. ; Rice, Aaron N. ; Risch, Denise ; Scott, Alyssa ; Soldevilla, Melissa ; Stafford, Kathleen M. ; Stanistreet, Joy ; Summers, Erin ; Todd, Sean ; Van Parijs, Sofie M.Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.
-
ArticleBeaked whales respond to simulated and actual navy sonar(Public Library of Science, 2011-03-14) Tyack, Peter L. ; Zimmer, Walter M. X. ; Moretti, David J. ; Southall, Brandon L. ; Claridge, Diane E. ; Durban, John W. ; Clark, Christopher W. ; D'Amico, Angela ; DiMarzio, Nancy A. ; Jarvis, Susan ; McCarthy, Elena ; Morrissey, Ronald ; Ward, Jessica ; Boyd, Ian L.Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.
-
ArticleSongbird dynamics under the sea : acoustic interactions between humpback whales suggest song mediates male interactions(The Royal Society, 2018-02-14) Cholewiak, Danielle ; Cerchio, Salvatore ; Jacobsen, Jeff K. ; Urbán-R., Jorge ; Clark, Christopher W.The function of song has been well studied in numerous taxa and plays a role in mediating both intersexual and intrasexual interactions. Humpback whales are among few mammals who sing, but the role of sexual selection on song in this species is poorly understood. While one predominant hypothesis is that song mediates male–male interactions, the mechanism by which this may occur has never been explored. We applied metrics typically used to assess songbird interactions to examine song sequences and movement patterns of humpback whale singers. We found that males altered their song presentation in the presence of other singers; focal males increased the rate at which they switched between phrase types (p = 0.005), and tended to increase the overall evenness of their song presentation (p = 0.06) after a second male began singing. Two-singer dyads overlapped their song sequences significantly more than expected by chance. Spatial analyses revealed that change in distance between singers was related to whether both males kept singing (p = 0.012), with close approaches leading to song cessation. Overall, acoustic interactions resemble known mechanisms of mediating intrasexual interactions in songbirds. Future work should focus on more precisely resolving how changes in song presentation may be used in competition between singing males.
-
ArticleInter-annual decrease in pulse rate and peak frequency of Southeast Pacific blue whale song types(Nature Research, 2020-05-15) Malige, Franck ; Patris, Julie ; Buchan, Susannah J. ; Stafford, Kathleen M. ; Shabangu, Fannie ; Findlay, Ken ; Hucke-Gaete, Rodrigo ; Neira, Sergio ; Clark, Christopher W. ; Glotin, HervéA decrease in the frequency of two southeast Pacific blue whale song types was examined over decades, using acoustic data from several different sources in the eastern Pacific Ocean ranging between the Equator and Chilean Patagonia. The pulse rate of the song units as well as their peak frequency were measured using two different methods (summed auto-correlation and Fourier transform). The sources of error associated with each measurement were assessed. There was a linear decline in both parameters for the more common song type (southeast Pacific song type n.2) between 1997 to 2017. An abbreviated analysis, also showed a frequency decline in the scarcer southeast Pacific song type n.1 between 1970 to 2014, revealing that both song types are declining at similar rates. We discussed the use of measuring both pulse rate and peak frequency to examine the frequency decline. Finally, a comparison of the rates of frequency decline with other song types reported in the literature and a discussion on the reasons of the frequency shift are presented.