Hart Stanley R.

No Thumbnail Available
Last Name
First Name
Stanley R.

Search Results

Now showing 1 - 20 of 25
  • Article
    Age systematics of two young en echelon Samoan volcanic trails
    (American Geophysical Union, 2011-07-29) Koppers, Anthony A. P. ; Russell, Jamie A. ; Roberts, Jed ; Jackson, Matthew G. ; Konter, Jasper G. ; Wright, Dawn J. ; Staudigel, Hubert ; Hart, Stanley R.
    The volcanic origin of the Samoan archipelago can be explained by one of three models, specifically, by a hot spot forming over a mantle plume, by lithospheric extension resulting from complex subduction tectonics in the region, or by a combination of these two processes, either acting sequentially or synchronously. In this paper, we present results of 36 high-resolution 40Ar/39Ar incremental heating age analyses for the initial (submarine) phase of Samoan volcanoes, ranging from 13.2 Ma for the westernmost Samoan seamounts to 0.27 Ma in the eastern Samoan volcanic province. Taken as a whole, our new age data point to a hot spot origin for the shield-building volcanism in the Samoan lineament, whereby seamounts younger than 5 Ma are consistent with a model of constant 7.1 cm/yr plate motion, analogous to GPS measurements for the Pacific Plate in this region. This makes our new 40Ar/39Ar ages of the submarine basalts all older compared to recent absolute plate motion (APM) models by Wessel et al. (2008), which are based on the inversion of twelve independent seamount trails in the Pacific relative to a fixed reference frame of hot spots and which predict faster plate motions of around 9.3 cm/yr in the vicinity of Samoa. The Samoan ages are also older than APM models by Steinberger et al. (2004) taking into account the motion of hot spots in the Pacific alone or globally. The age systematics become more complicated toward the younger end of the Samoan seamount trail, where its morphology bifurcates into two en echelon subtracks, termed the VAI and MALU trends, as they emanate from two eruptive centers at Vailulu'u and Malumalu seamount, respectively. Spaced ∼50 km apart, the VAI and MALU trends have distinct geochemical characters and independent but overlapping linear 40Ar/39Ar age progressions since 1.5 Ma. These phenomena are not unique to Samoa, as they have been observed at the Hawaiian hot spot, and can be attributed to a geochemical zoning in its underlying mantle source or plume. Moreover, the processes allowing for the emergence of two distinct eruptive centers in the Samoan archipelago, the stepped offset of these subtracks, and their slight obliqueness with respect to the overall seamount trail orientation may very well be controlled by local tectonics, stresses, and extension, also causing the rejuvenated volcanism on the main islands of Savai'i, Upolu, and Tutuila since 0.4 Ma.
  • Preprint
    Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr–Nd–Os isotopes of peridotite xenoliths from Yangyuan and Fansi
    ( 2007-02-02) Xu, Yi-Gang ; Blusztajn, Jerzy S. ; Ma, Jin-Long ; Suzuki, Katsuhiko ; Liu, J.-F. ; Hart, Stanley R.
    Sr-Nd-Os isotopic analyses are presented for peridotite xenoliths from Tertiary alkali basalts in Yangyuan and Fansi with the aim of identifying and characterizing the relics of ancient lithospheric mantle that survived lithospheric removal in the western North China Craton (NCC). The analyzed samples are residual lherzolites and harzburgites, ranging from fertile to highly depleted (0.36-4.0 wt% Al2O3) composition. Some LREE-enriched samples are characterized by moderate 87Sr/86Sr (0.7044 to 0.7047) and low εNd (–6.9 to –10.6), pointing to an EMI-type signature. This is distinct from the predominant depleted isotopic composition in mantle xenoliths from eastern China. Os isotopic ratios range from 0.1106 to 0.1325. The lower limit is the most unradiogenic value measured so far for Cenozoic basalt-borne xenoliths from eastern China. Two samples show radiogenic Os ratios higher than that of the primitive upper mantle, one sample has an anomalously high Os concentration (>9 ppb). These samples also show high La/Yb, consistent with the addition of radiogenic components during the infiltration of asthenosphere-derived and/or subduction-related melts in the lithospheric mantle. The remaining samples define positive correlations between 187Os/188Os and indices of melt extraction, which yield model ages of 2.4-2.8 Ga. This age of melt extraction overlaps with the Nd model age of the overlying crust, indicating a coupled crust-mantle system in the western NCC. This contrasts with the decoupled nature in the eastern NCC, suggesting distinct mantle domains underneath the NCC. Such a heterogeneous age structure of the upper mantle is compatible with the view that the lithospheric removal was largely limited to the eastern NCC.
  • Article
    Deglacial sea surface temperatures of the western tropical Pacific : a new look at old coral
    (American Geophysical Union, 2004-12-30) Cohen, Anne L. ; Hart, Stanley R.
    Using Secondary Ion Mass Spectrometry (SIMS) ion microprobe techniques, we generated annual Sr/Ca cycles with subweekly resolution from chunks of Porites coral retrieved from a Tahiti barrier reef drill core (149°W, 17°S), representing the period 13,650 to 13,100 years B.P. The centers of pristine skeletal septa were selectively targeted with a 10 μm diameter ion beam spot, avoiding adjacent pore spaces occupied by secondary aragonite needles. Applying a Sr/Ca–sea surface temperature (SST) calibration equation derived from modern Tahiti Porites having the same low growth rate as the fossil specimens, we obtained SSTs ∼0.5°–1.5°C cooler during the Bølling-Allerod relative to the present day, with no significant change in seasonality. On the contrary, we estimate that analysis of bulk samples would yield excessively cool Sr/Ca-based SST estimates due to the occupation by secondary aragonite crystals of up to 50% of the skeletal pore space in the ancient samples. We find that growth rate effects on coral Sr/Ca further depress the apparent mean annual derived SSTs (by >3°C) and amplify the apparent seasonality by selectively enhancing wintertime cooling. Our microscale analysis of pristine skeleton and application of an appropriate growth-dependent calibration yield Sr/Ca-derived SSTs that are in good agreement with those derived from Mg/Ca ratios of calcitic foraminifera which indicate a continuous postglacial warming of the western tropical Pacific, in phase with the warming of the tropical Atlantic.
  • Article
    FOZO, HIMU, and the rest of the mantle zoo
    (American Geophysical Union, 2005-05-19) Stracke, Andreas ; Hofmann, Albrecht W. ; Hart, Stanley R.
    The parameter μ describes the 238U/204Pb ratio of an Earth reservoir. Mantle domains labeled HIMU (high μ) originally defined reservoirs with highly radiogenic Pb isotope ratios observed in basalts from a select number of ocean islands, St. Helena in the Atlantic Ocean and the Cook-Austral islands in the South Pacific Ocean. While some authors use the term HIMU in this original sense, others refer to HIMU as a widespread component in many mid-ocean ridge and ocean island basalt (MORB and OIB) sources. Here we show that highly radiogenic Pb isotope signatures in MORB and OIB originate from two different sources. In addition to the classical HIMU component observed at St. Helena and the South Pacific (named HIMU in the following), we define a component with slightly less radiogenic Pb but significantly more radiogenic Sr isotope signatures. This component lies at the extension of the (Atlantic and Pacific) MORB array in a Sr-Pb isotope ratio diagram and is argued to be a ubiquitous component in MORB and many OIB sources. The inferred role of this component in the mantle and its inferred genetic origin closely resemble those originally suggested for a mantle component termed FOZO by Hart and coworkers. By redefining the composition, the origin, and the role of FOZO in the mantle, we establish a simple conceptual framework that explains the isotopic variability in both MORB and OIB with the lowest number of components. OIB are grouped into HIMU-type OIB and basalts from islands that diverge from the MORB-FOZO array toward various isotopically “enriched” compositions (EM). The apparent ubiquity of FOZO in the mantle and the calculated isotopic evolution of compositionally diverse MORB suggest that normal mantle melting and continuous subduction and aging of that crust during recycling through the mantle are the dominant causes of the MORB-FOZO array. In contrast to FOZO, HIMU-type OIB are quite rare, and if an origin by recycling of oceanic crust is also postulated, the production of HIMU sources has to be a special and rare combination of age and composition of subduction-modified recycled oceanic crust.
  • Article
    Vailulu’u Seamount
    (Oceanography Society, 2010-03) Koppers, Anthony A. P. ; Staudigel, Hubert ; Hart, Stanley R. ; Young, Craig M. ; Konter, Jasper G.
    Vailulu’u seamount is an active underwater volcano that marks the end of the Samoan hotspot trail.
  • Article
    Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member : evidence from the Samoan Volcanic Chain
    (American Geophysical Union, 2004-04-27) Workman, Rhea K. ; Hart, Stanley R. ; Jackson, Matthew G. ; Regelous, Marcel ; Farley, Kenneth A. ; Blusztajn, Jerzy S. ; Kurz, Mark D. ; Staudigel, Hubert
    An in-depth Sr-Nd-Pb-He-Os isotope and trace element study of the EMII-defining Samoan hot spot lavas leads to a new working hypothesis for the origin of this high 87Sr/86Sr mantle end-member. Systematics of the Samoan fingerprint include (1) increasing 206Pb/204Pb with time - from 18.6 at the older, western volcanoes to 19.4 at the present-day hot spot center, Vailulu'u Seamount, (2) en-echelon arrays in 206Pb/204Pb – 208Pb/204Pb space which correspond to the two topographic lineaments of the 375 km long volcanic chain – this is much like the Kea and Loa Trends in Hawai'i, (3) the highest 87Sr/86Sr (0.7089) of all oceanic basalts, (4) an asymptotic decrease in 3He/4He from 24 RA [Farley et al., 1992] to the MORB value of 8 RA with increasing 87Sr/86Sr, and (5) mixing among four components which are best described as the “enriched mantle”, the depleted FOZO mantle, the (even more depleted) MORB Mantle, and a mild HIMU (high 238U/204Pb) mantle component. A theoretical, “pure” EMII lava composition has been calculated and indicates an extremely smooth trace element pattern of this end-member mantle reservoir. The standard recycling model (of ocean crust/sediment) fails as an explanation for producing Samoan EM2, due to these smooth spidergrams for EM2 lavas, low 187Os/188Os ratios and high 3He/4He (>8 RA). Instead, the origin of EM2 has been modeled with the ancient formation of metasomatised oceanic lithosphere, followed by storage in the deep mantle and return to the surface in the Samoan plume.
  • Article
    Temperature and velocity measurements of a rising thermal plume
    (John Wiley & Sons, 2015-03-04) Cagney, Neil ; Newsome, William H. ; Lithgow-Bertelloni, Carolina ; Cotel, Aline ; Hart, Stanley R. ; Whitehead, John A.
    The three-dimensional velocity and temperature fields surrounding an isolated thermal plume in a fluid with temperature-dependent viscosity are measured using Particle-Image Velocimetry and thermochromatic liquid crystals, respectively. The experimental conditions are relevant to a plume rising through the mantle. It is shown that while the velocity and the isotherm surrounding the plume can be used to visualize the plume, they do not reveal the finer details of its structure. However, by computing the Finite-Time Lyapunov Exponent fields from the velocity measurements, the material lines of the flow can be found, which clearly identify the shape of the plume head and characterize the behavior of the flow along the plume stem. It is shown that the vast majority of the material in the plume head has undergone significant stretching and originates from a wide region very low in the fluid domain, which is proposed as a contributing factor to the small-scale isotopic variability observed in ocean-island basalt regions. Lastly, the Finite-Time Lyapunov Exponent fields are used to calculate the steady state rise velocity of the thermal plume, which is found to scale linearly with the Rayleigh number, in contrast to some previous work. The possible cause and the significance of these conflicting results are discussed, and it is suggested that the scaling relationship may be affected by the temperature-dependence of the fluid viscosity in the current work.
  • Article
    Petrogenesis of lava from Christmas Island, Northeast Indian Ocean: implications for the nature of recycled components in non-plume intraplate settings
    (MDPI, 2022-03-03) Falloon, Trevor J. ; Hoernle, Kaj A. ; Schaefer, Bruce F. ; Bindeman, Ilya N. ; Hart, Stanley R. ; Garbe-Schonberg, Dieter ; Duncan, Robert A.
    Lava samples from the Christmas Island Seamount Province (CHRISP) record an extreme range in enriched mantle (EM) type Sr-Nd-Pb-Hf isotope signatures. Here we report osmium isotope data obtained on four samples from the youngest, Pliocene petit-spot phase (Upper Volcanic Series, UVS; ~4.4 Ma), and four samples from the earlier, Eocene (Lower Volcanic Series, LVS; ~40 Ma) shield building phase of Christmas Island. Osmium concentrations are low (5–82 ppt) with initial Os isotopic values (187Os/188Osi) ranging from (0.1230–0.1679). Along with additional new geochemical data (major and trace elements, Sr-Nd-Pb isotopes, olivine δ18O values), we demonstrate the following: (1) The UVS is consistent with melting of shallow Indian mid-ocean ridge basalt (MORB) mantle enriched with both lower continental crust (LCC) and subcontinental lithospheric mantle (SCLM) components; and (2) The LVS is consistent with recycling of SCLM components related to Gondwana break-up. The SCLM component has FOZO or HIMU like characteristics. One of the LVS samples has less radiogenic Os (γOs –3.4) and provides evidence for the presence of ancient SCLM in the source. The geochemistry of the Christmas Island lava series supports the idea that continental breakup causes shallow recycling of lithospheric and lower crustal components into the ambient MORB mantle.
  • Article
    The Sr-87/Sr-86 and Nd-143/Nd-144 disequilibrium between Polynesian hot spot lavas and the clinopyroxenes they host : evidence complementing isotopic disequilibrium in melt inclusions
    (American Geophysical Union, 2009-03-11) Jackson, Matthew G. ; Hart, Stanley R. ; Shimizu, Nobumichi ; Blusztajn, Jerzy S.
    We report 87Sr/86Sr and 143Nd/144Nd data on clinopyroxenes recovered from 10 ocean island lavas from three different hot spots (Samoa, Society, and Cook-Austral island chains). The clinopyroxenes recovered from eight of the 10 lavas analyzed in this study exhibit 87Sr/86Sr disequilibrium with respect to the host lava. The 87Sr/86Sr ratios in clinopyroxene separates are 95–3146 ppm (0.0095–0.31%) different from their respective host whole rocks. Clinopyroxenes in three lavas have 143Nd/144Nd ratios that are 70–160 ppm (0.007–0.016%) different from the host lavas. The 87Sr/86Sr and 143Nd/144Nd disequilibrium in one lava (the oldest lava considered in this study, Mangaia sample MGA-B-47) can be attributed to posteruptive radiogenic ingrowth, but the isotope disequilibrium in the other, younger lavas cannot be explained by this mechanism. In five of the lava samples, two populations of clinopyroxene were isolated (black and green, separated by color). In four out of five of these samples, the 87Sr/86Sr ratios of the two clinopyroxene populations are isotopically different from each other. In addition to 87Sr/86Sr disequilibrium, the two clinopyroxene populations in one of the lavas (Tahaa sample TAA-B-26) have 143Nd/144Nd ratios that are ∼100 ppm different from each other. Given the resilience of clinopyroxene to seawater alteration and the likelihood that the Sr and Nd isotope composition of fresh clinopyroxene separates provides a faithful record of primary magmatic compositions, the clinopyroxene-clinopyroxene isotope disequilibrium in these four lavas provides strong evidence that a mechanism other than seawater alteration has generated the observed isotopic disequilibrium. This study confirms the isotopic diversity in ocean island lavas previously observed in olivine-hosted melt inclusions. For example, the Sr isotopic variability previously observed in olivine-hosted melt inclusions is mirrored by the isotopic diversity in clinopyroxenes isolated from many of the same Samoan lavas. The isotopic data from melt inclusions and clinopyroxenes are not consistent with shallow assimilation of sediment or with entrainment of xenocrystic clinopyroxene from the oceanic crust or upper mantle. Instead, the data are interpreted as reflecting isotopic heterogeneity in the mantle sources of the lavas. The isotopic diversity in clinopyroxenes and melt inclusions suggests that a single lava can host components derived from isotopically diverse source regions.
  • Article
    238U-Th-230-Ra-226-Pb-210-Po-210, Th-232-Ra-228, and U-235-Pa-231 constraints on the ages and petrogenesis of Vailulu'u and Malumalu Lavas, Samoa
    (American Geophysical Union, 2008-04-01) Sims, Kenneth W. W. ; Hart, Stanley R. ; Reagan, Mark K. ; Blusztajn, Jerzy S. ; Staudigel, Hubert ; Sohn, Robert A. ; Layne, Graham D. ; Ball, Lary A. ; Andrews, J. E.
    We report 238U-230Th-226Ra-210Pb-210Po, 232Th-228Ra and 235U-231Pa measurements for a suite of 14 geologically and geochemically well-characterized basaltic samples from the Samoan volcanoes Vailulu'u, Malumalu, and Savai'i. Maximum eruption ages based on the presence of parent-daughter disequilibria indicate that Vailulu'u is magmatically productive with young lavas (<8 Ka) resurfacing both its summit crater and lower flanks. 210Pb and 210Po measurements indicate that several flows have erupted within its summit crater in the past 100 years, with the newest observed flow being erupted in November of 2004. For lavas which have eruption ages that are demonstrably young, relative to the half-lives of 230Th, 231Pa, and 226Ra, we interpret their 238U -230Th, 235U-231Pa and 230Th - 226Ra disequilibria in terms of the magmatic processes occurring beneath the Samoan Islands. (230Th/238U) > 1 indicates that garnet is required as a residual phase in the magma sources for all these lavas. The large range of (238U/232Th) and (230Th/232Th) is attributed to long-term source variation. The Samoan basalts are all alkaline basalts and show significant 230Th and 231Pa excesses but limited variability, indicating that they have been derived by small but similar extents of melting. Their (230Th/238U), (231Pa/235U) and Sm/Nd fractionation are consistent with correlations among other ocean island basalt suites (particularly Hawaii) which show that (230Th/238U) and (231Pa/235U) of many OIBS can be explained by simple time-independent models. Interpretation of the 226Ra data requires time-dependent melting models. Both chromatographic porous flow and dynamic melting of a garnet peridotite source can adequately explain the combined U-Th-Ra and U-Pa data for these Samoan basalts. Several young samples from the Vailulu'u summit crater also exhibit significant 210Pb deficits that reflect either shallow magmatic processes or continuous magma degassing. In both cases, decadal residence times are inferred from these 210Pb deficits. The young coeval volcanism on Malumalu and Vailulu'u suggests the Samoa hot spot is currently migrating to the northeast due to dynamic interaction with the Tonga slab.
  • Preprint
    The return of subducted continental crust in Samoan lavas
    ( 2007-08-04) Jackson, Matthew G. ; Hart, Stanley R. ; Koppers, Anthony A. P. ; Staudigel, Hubert ; Konter, Jasper G. ; Blusztajn, Jerzy S. ; Kurz, Mark D. ; Russell, Jamie A.
    Substantial quantities of terrigenous sediments are known to enter the mantle at subduction zones, but little is known about their fate in the mantle. Subducted sediment may be entrained in buoyantly upwelling plumes and returned to the earth’s surface at hotspots, but the proportion of recycled sediment in the mantle is small and clear examples of recycled sediment in hotspot lavas are rare. We report here remarkably enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures (up to 0.720830 and 0.512285, respectively) in Samoan lavas from three dredge locations on the underwater flanks of Savai’i island, Western Samoa. The submarine Savai’i lavas represent the most extreme 87Sr/86Sr isotope compositions reported for ocean island basalts (OIBs) to date. The data are consistent with the presence of a recycled sediment component (with a composition similar to upper continental crust, or UCC) in the Samoan mantle. Trace element data show similar affinities with UCC—including exceptionally low Ce/Pb and Nb/U ratios—that complement the enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures. The geochemical evidence from the new Samoan lavas radically redefines the composition of the EM2 (enriched mantle 2) mantle endmember, and points to the presence of an ancient recycled UCC component in the Samoan plume.
  • Article
    Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He
    (American Geophysical Union, 2008-04-17) Jackson, Matthew G. ; Hart, Stanley R. ; Saal, Alberto E. ; Shimizu, Nobumichi ; Kurz, Mark D. ; Blusztajn, Jerzy S. ; Skovgaard, Anna C.
    We report evidence for a global Ti, Ta, and Nb (TITAN) enriched reservoir sampled by ocean island basalts (OIBs) with high 3He/4He ratios, an isotopic signature associated with the deep mantle. Excesses of Ti (and to a lesser degree Nb and Ta) correlate remarkably well with 3He/4He in a data set of global OIBs, demonstrating that a major element signature is associated with the high 3He/4He mantle. Additionally, we find that OIBs with high 3He/4He ratios have moderately radiogenic 187Os/188Os (>0.135). The TITAN enrichment and radiogenic 187Os/188Os in high 3He/4He OIBs indicate that they are melts of a mantle domain that hosts a nonprimitive (nonchondritic) component. The observation of TITAN enrichment in the high 3He/4He mantle may be important in balancing the Earth's budget for the TITAN elements. Understanding the origin of the TITAN enrichment is important for constraining the evolution of the enigmatic high 3He/4He mantle domain.
  • Preprint
    Experimental determination of Pb partitioning between sulfide melt and basalt melt as a function of P, T and X
    ( 2016-02-12) Hart, Stanley R. ; Gaetani, Glenn A.
    We have measured the partition coefficient of Pb (KdPb) between FeS melt and basalt melt at temperatures of 1250–1523 °C, pressures of 1.0–3.5 GPa and oxygen fugacities at iron–wustite and wustite–magnetite. The total observed range of KdPb is 4.0–66.6, with a strong negative dependence on pressure and a strong negative dependence on FeO of the silicate melt (Fe+2 only). The FeO control was constrained over a wide range of FeO (4.2–39.5%). We found that the effect of oxygen fugacity can be subsumed under the FeO control parameter. Prior work has established the lack of a significant effect of temperature (Kiseeva and Wood, 2015; Li and Audétat, 2015). Our data are parameterized as: KdPb = 4.8 + (512 − 119*P in GPa)*(1/FeO − 0.021). We also measured a single value of KdPb between clinopyroxene and basalt melt at 2.0 GPa of 0.020 ± 0.001. This experimental data supports the “natural” partitioning of Pb measured on sulfide globules in MORB (Patten et al., 2013), but not the low KdPb of ∼3 inferred from sulfides in abyssal peridotites by Warren and Shirey (2012). It also quantitatively affirms the modeling of Hart and Gaetani (2006) with respect to using sulfide to buffer the canonical Nd/Pb ratio for MORB and OIB (Hofmann, 2003). For the low FeO and pressure of segregation typical of MORB, KdPb ∼ 45, and the Nd/Pb ratio of erupted basalts will be the same as the Nd/Pb ratio of the mantle source. The remaining puzzle is why MORB and OIB have the same Nd/Pb when they clearly have different FeO and pressure of melt segregation.
  • Preprint
    The origin of HIMU in the SW Pacific : evidence from intraplate volcanism in southern New Zealand and subantarctic islands
    ( 2006-02-17) Panter, Kurt S. ; Blusztajn, Jerzy S. ; Hart, Stanley R. ; Kyle, K. R. ; Esser, R. ; McIntosh, William C.
    This paper presents field, geochemical and isotopic (Sr, Nd, Pb) results on basalts from the Antipodes, Campbell and Chatham Islands, New Zealand. New 40Ar/39Ar age determinations along with previous K-Ar dates reveal three major episodes of volcanic activity on Chatham Island (85-82, 41-35, ~5 Ma). Chatham and Antipodes samples comprise basanite, alkali and transitional basalts that have HIMU-like isotopic (206Pb/204Pb >20.3-20.8, 87Sr/86Sr <0.7033, 143Nd/144Nd >0.5128) and trace element affinities (Ce/Pb 28-36, Nb/U 34-66, Ba/Nb 4-7). The geochemistry of transitional to Q-normative samples from Campbell Island is explained by interaction with continental crust. The volcanism is part of a long-lived (~100 Myr), low-volume, diffuse alkaline magmatic province that includes deposits on the North and South Islands as well as portions of West Antarctica and SE Australia. All of the continental areas were juxtaposed on the eastern margin of Gondwanaland at >83 Ma. A ubiquitous feature of mafic alkaline rocks from this region is their depletion in K and Pb relative to other highly incompatible elements when normalized to primitive mantle values. The inversion of trace element data indicates enriched mantle sources that contain variable proportions of hydrous minerals. We propose that the mantle sources represent continental lithosphere that host amphibole/phlogopite-rich veins formed by plume and/or subduction related metasomatism between 500 and 100 Ma. The strong HIMU signature (206Pb/204Pb >20.5) is considered to be an in-grown feature generated by partial-dehydration and loss of hydrophile elements (Pb, Rb, K) relative to more magmaphile elements (Th, U, Sr) during short-term storage at the base of the lithosphere.
  • Article
    Vailulu'u Seamount, Samoa : life and death on an active submarine volcano
    (National Academy of Sciences, 2006-04-13) Staudigel, Hubert ; Hart, Stanley R. ; Pile, Adele ; Bailey, Bradley E. ; Baker, Edward T. ; Brooke, Sandra ; Connelly, Douglas P. ; Haucke, Lisa ; German, Christopher R. ; Hudson, Ian ; Jones, Daniel O. B. ; Koppers, Anthony A. P. ; Konter, Jasper G. ; Lee, Ray ; Pietsch, Theodore W. ; Tebo, Bradley M. ; Templeton, Alexis S. ; Zierenberg, Robert ; Young, Craig M.
    Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids.
  • Preprint
    Scale length of mantle heterogeneities : constraints from helium diffusion
    ( 2008-02-23) Hart, Stanley R. ; Kurz, Mark D. ; Wang, Z.
    A model of coupled He production/diffusion is used to constrain the question of whether Earth’s peridotitic mantle contains ubiquitous mesoscale veins or slabs of other lithologies. The high diffusion rates of helium preclude survival of He isotope heterogeneities on scales smaller than a few tens of meters, especially if they represent long term in-growth of 4He in the mantle. For 1.5 Gy residence times, and a diffusion coefficient of 10-10 m2/sec, 0.5 km slabs or 2 km cylinders will lose >90% of in-grown 4He. However, substantial 3He/4He variations may persist in slabs or be induced in adjacent mantle, depending on initial He, U and Th contents. We have modeled three cases of 3He/4He equilibration between mantle domains: an ocean crust (OC) slab in depleted upper mantle (DMM) or in enriched mantle (BSE), and a BSE slab in DMM. For a 1 km OC slab in DMM (8 Ra today), the slab today will have 3He/4He of only 3 Ra, and will have influenced the surrounding mantle with 4He for >7 km on either side. The average 3He/4He of this mixed zone will be <7 Ra, even when sampled by melts over a total width of 20-50 km. For the case of a 1 km BSE slab in DMM (8 Ra today), the slab will be 37 Ra today, and will have infected a mantle domain >16 km wide. Even with a 60 km melt sampling width, the average 3He/4He will be >15 Ra. Slabs may lose their He signature by diffusion, but their presence will be recorded in the surrounding mantle. We have evaluated 3 along-axis N-MORB ridge-crest data sets in this context (MAR 25.7-26.5°S; EPR 19-23°S; SWIR 16-24°E), with a view to defining scale-lengths of He isotope variability. The average 3He/4He variability for these 3 areas is very small, and independent of spreading rate: 0.13, 0.19 and 0.21 Ra (±1σ). Since these ridges range from ultraslow to very fast-spreading, the variability in size of along-axis magma chambers will lead inevitably to various scales of melt averaging. We conclude that these ridge areas are not sampling mantle that contains enriched veins or recycled oceanic crust slabs of significant size (> tens of meters). It appears difficult to sustain a view of the upper mantle as a ubiquitous mixture of veins and depleted matrix, with MORB always representing an averaging of this mixture.
  • Article
    Hydrothermal venting at Vailulu'u Seamount : the smoking end of the Samoan chain
    (American Geophysical Union, 2004-02-10) Staudigel, Hubert ; Hart, Stanley R. ; Koppers, Anthony A. P. ; Constable, C. ; Workman, Rhea K. ; Kurz, Mark D. ; Baker, Edward T.
    The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and 3He (1 × 10−11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40–50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 ± 0.2 × 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 × 108 m3/day [Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20–100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker.
  • Article
    Seafloor seismic monitoring of an active submarine volcano : local seismicity at Vailulu'u Seamount, Samoa
    (American Geophysical Union, 2004-06-26) Konter, Jasper G. ; Staudigel, Hubert ; Hart, Stanley R. ; Shearer, Peter M.
    We deployed five ocean bottom hydrophones (OBHs) for a 1-year seismic monitoring study of Vailulu'u Seamount, the youngest and easternmost volcano in the Samoan Archipelago. Four instruments were placed on the summit crater rim at 600–700 m water depth, and one was placed inside the crater at 1000 m water depth. An analysis of the first 45 days of records shows a very large number of seismic events, 211 of them local. These events define a steady background activity of about four seismic events per day, increasing to about 10 events per day during a week of heightened seismic activity, which peaked at 40 events during 1 day. We identified 107 earthquakes, whose arrivals could be picked on all five stations and that are likely located within the seamount, based on their similar waveforms. Two linear trends are defined by 21 of these events. These are extremely well correlated and located, first downward then upward on a steeply inclined plane that is close to the axial plane of the southeast rift as it emerges from the main summit of Vailulu'u. These events resemble volcanotectonic earthquakes from subaerial volcanoes in displaying very coherent seismic waveforms and by showing systematic, narrowly defined progressions in hypocenter locations. We propose that these events reflect brittle rock failure due to magma redistribution in or near a central magma reservoir.
  • Preprint
    Constraining the source of mantle plumes
    ( 2016-01-08) Cagney, Neil ; Crameri, Fabio ; Newsome, William H. ; Lithgow-Bertelloni, Carolina ; Cotel, Aline ; Hart, Stanley R. ; Whitehead, John A.
    In order to link the geochemical signature of hot spot basalts to Earth’s deep interior, it is first necessary to understand how plumes sample different regions of the mantle. Here, we investigate the relative amounts of deep and shallow mantle material that are entrained by an ascending plume and constrain its source region. The plumes are generated in a viscous syrup using an isolated heater for a range of Rayleigh numbers. The velocity fields are measured using stereoscopic Particle-Image Velocimetry, and the concept of the ‘vortex ring bubble’ is used to provide an objective definition of the plume geometry. Using this plume geometry, the plume composition can be analysed in terms of the proportion of material that has been entrained from different depths. We show that the plume composition can be well described using a simple empirical relationship, which depends only on a single parameter, the sampling coefficient, Sc. High-Sc plumes are composed of material which originated from very deep in the fluid domain, while low-Sc plumes contain material entrained from a range of depths. The analysis is also used to show that the geometry of the plume can be described using a similarity solution, in agreement with previous studies. Finally, numerical simulations are used to vary both the Rayleigh number and viscosity contrast independently. The simulations allow us to predict the value of the sampling coefficient for mantle plumes; we find that as a plume reaches the lithosphere, 90% of its composition has been derived from the lowermost 260−750 km in the mantle, and negligible amounts are derived from the shallow half of the lower mantle. This result implies that isotope geochemistry cannot provide direct information about this un-sampled region, and that the various known geochemical reservoirs must lie in the deepest few hundred kilometres of the mantle.
  • Preprint
    Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin
    ( 2006-07-03) Hart, Stanley R. ; Blusztajn, Jerzy S.
    Site 1276, Leg 210 of the Ocean Drilling Program, was located on the Newfoundland margin in seismically-defined ~128 Ma “transitional” crust just west of presumed oceanic crust, and the M3 magnetic anomaly. The goal of drilling on this non-volcanic margin was to study the rifting, nature of basement, and post-rift sedimentation in the Newfoundland-Iberia rift. Drilling of this 1739m hole was terminated 90-160 meters above basement, in the lower of a doublet of alkaline diabase sills. We have carried out geochemical studies of the sill complex, in the hopes that they will provide proxy information regarding the nature of the underlying basement. Excellent 40Ar/39Ar plateau ages were obtained for the two sills: upper sill ~105.3 Ma; lower sill ~97.8 Ma. Thus the sills are substantially younger than the presumed age of the seafloor at site 1276 (~128 Ma), and were intruded beneath substantial sediment overburden (250 m for the upper, older sill, and 575 m for the lower younger sill). While some of the geochemistry of the sills has been compromised by alteration, the “immobile” trace elements show these sills to be hawaiites, differentiated from an enriched alkaline or basanitic parentage. Sr, Nd and Pb isotopes are suggestive of an enriched hotspot/plume mantle source, with a possible “added” component of continental material. These sills unequivocally were not derived from typical MORB (asthenospheric) upper mantle.