Druffel Ellen R. M.

No Thumbnail Available
Last Name
Druffel
First Name
Ellen R. M.
ORCID
0000-0002-7139-1075

Search Results

Now showing 1 - 15 of 15
  • Article
    Marine organic carbon and radiocarbon – present and future challenges
    (Cambridge University Press, 2022-01-25) Druffel, Ellen R. M. ; Beaupre, Steven R. ; Grotheer, Hendrik ; Lewis, Christian B. ; McNichol, Ann P. ; Mollenhauer, Gesine ; Walker, Brett D.
    We discuss present and developing techniques for studying radiocarbon in marine organic carbon (C). Bulk DOC (dissolved organic C) Δ14C measurements reveal information about the cycling time and sources of DOC in the ocean, yet they are time consuming and need to be streamlined. To further elucidate the cycling of DOC, various fractions have been separated from bulk DOC, through solid phase extraction of DOC, and ultrafiltration of high and low molecular weight DOC. Research using 14C of DOC and particulate organic C separated into organic fractions revealed that the acid insoluble fraction is similar in 14C signature to that of the lipid fraction. Plans for utilizing this methodology are described. Studies using compound specific radiocarbon analyses to study the origin of biomarkers in the marine environment are reviewed and plans for the future are outlined. Development of ramped pyrolysis oxidation methods are discussed and scientific questions addressed. A modified elemental analysis (EA) combustion reactor is described that allows high particulate organic C sample throughput by direct coupling with the MIniCArbonDAtingSystem.
  • Article
    Dissolved organic radiocarbon in the central Pacific Ocean
    (American Geophysical Union, 2019-05-02) Druffel, Ellen R. M. ; Griffin, Sheila ; Wang, Ning ; Garcia, Noreen G. ; McNichol, Ann P. ; Key, Robert M. ; Walker, Brett D.
    We report marine dissolved organic carbon (DOC) concentrations, and DOC ∆14C and δ13C values in seawater collected from the central Pacific. Surface ∆14C values are low in equatorial and polar regions where upwelling occurs and high in subtropical regions dominated by downwelling. A core feature of these data is that 14C aging of DOC (682 ± 86 14C years) and dissolved inorganic carbon (643 ± 40 14C years) in Antarctic Bottom Water between 54.0°S and 53.5°N are similar. These estimates of aging are minimum values due to mixing with deep waters. We also observe minimum ∆14C values (−550‰ to −570‰) between the depths of 2,000 and 3,500 m in the North Pacific, though the source of the low values cannot be determined at this time.
  • Article
    East Asian Monsoon variability since the sixteenth century
    (American Geophysical Union, 2019-04-16) Goodkin, Nathalie F. ; Bolton, Annette ; Hughen, Konrad A. ; Karnauskas, Kristopher B. ; Griffin, Sheila ; Phan, Kim Hoang ; Vo, Si Tuan ; Ong, Maria Rosabelle ; Druffel, Ellen R. M.
    The East Asian Monsoon (EAM) impacts storms, freshwater availability, wind energy production, coal consumption, and subsequent air quality for billions of people across Asia. Despite its importance, the EAM's long‐term behavior is poorly understood. Here we present an annually resolved record of EAM variance from 1584 to 1950 based on radiocarbon content in a coral from the coast of Vietnam. The coral record reveals previously undocumented centennial scale changes in EAM variance during both the summer and winter seasons, with an overall decline from 1600 to the present. Such long‐term variations in monsoon variance appear to reflect independent seasonal mechanisms that are a combination of changes in continental temperature, the strength of the Siberian High, and El Niño–Southern Oscillation behavior. We conclude that the EAM is an important conduit for propagating climate signals from the tropics to higher latitudes.
  • Article
    Dissolved organic radiocarbon in the eastern Pacific and Southern Oceans
    (American Geophysical Union, 2021-05-24) Druffel, Ellen R. M. ; Griffin, Sheila ; Lewis, Christian B. ; Rudresh, Megha ; Garcia, Noreen G. ; Key, Robert M. ; McNichol, Ann P. ; Hauksson, Niels E. ; Walker, Brett D.
    We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C values in seawater collected from the Southern Ocean and eastern Pacific GOSHIP cruise P18 in 2016/2017. The aging of 14C in DOC in circumpolar deep water northward from 69°S to 20°N was similar to that measured in dissolved inorganic carbon in the same samples, indicating that the transport of deep waters northward is the primary control of 14C in DIC and DOC. Low DOC ∆14C and δ13C measurements between 1,200 and 3,400 m depth may be evidence of a source of DOC produced in nearby hydrothermal ridge systems (East Pacific Rise).
  • Article
    Low reservoir ages for the surface ocean from mid-Holocene Florida corals
    (American Geophysical Union, 2008-05-13) Druffel, Ellen R. M. ; Robinson, Laura F. ; Griffin, Sheila ; Halley, Robert B. ; Southon, John R. ; Adkins, Jess F.
    The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908–4955 and 3008–3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal δ 18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased Δ14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ∼3040 and ∼4930 cal years B.P. is ∼292 ± 30 years, less than the canonical value of 404 ± 20 years.
  • Article
    Blank assessment for ultra-small radiocarbon samples : chemical extraction and separation versus AMS
    (Dept. of Geosciences, University of Arizona, 2010-08) Santos, Guaciara M. ; Southon, John R. ; Drenzek, Nicholas J. ; Ziolkowski, Lori A. ; Druffel, Ellen R. M. ; Xu, Xiaomei ; Zhang, Dachun ; Trumbore, Susan E. ; Eglinton, Timothy I. ; Hughen, Konrad A.
    The Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) has developed protocols for analyzing radiocarbon in samples as small as ~0.001 mg of carbon (C). Mass-balance background corrections for modern and 14C-dead carbon contamination (MC and DC, respectively) can be assessed by measuring 14C-free and modern standards, respectively, using the same sample processing techniques that are applied to unknown samples. This approach can be validated by measuring secondary standards of similar size and 14C composition to the unknown samples. Ordinary sample processing (such as ABA or leaching pretreatment, combustion/graphitization, and handling) introduces MC contamination of ~0.6 ± 0.3 μg C, while DC is ~0.3 ± 0.15 μg C. Today, the laboratory routinely analyzes graphite samples as small as 0.015 mg C for external submissions and ≅0.001 mg C for internal research activities with a precision of ~1% for ~0.010 mg C. However, when analyzing ultra-small samples isolated by a series of complex chemical and chromatographic methods (such as individual compounds), integrated procedural blanks may be far larger and more variable than those associated with combustion/graphitization alone. In some instances, the mass ratio of these blanks to the compounds of interest may be so high that the reported 14C results are meaningless. Thus, the abundance and variability of both MC and DC contamination encountered during ultra-small sample analysis must be carefully and thoroughly evaluated. Four case studies are presented to illustrate how extraction chemistry blanks are determined.
  • Preprint
    Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds
    ( 2018-09) Vonk, Jorien E. ; Drenzek, Nicholas J. ; Hughen, Konrad A. ; Stanley, Rachel H. R. ; McIntyre, Cameron P. ; Montlucon, Daniel B. ; Giosan, Liviu ; Southon, John R. ; Santos, Guaciara M. ; Druffel, Ellen R. M. ; Andersson, August A. ; Sköld, Martin ; Eglinton, Timothy I.
    Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different predepositional histories. Here, we examine down-core 14C profiles of higher plant leaf waxderived fatty acids isolated from high fidelity sedimentary sequences spanning the socalled “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as < 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences.
  • Article
    Transport of organic carbon from the California coast to the slope region : a study of Δ14C and δ13C signatures of organic compound classes
    (American Geophysical Union, 2005-05-05) Hwang, Jeomshik ; Druffel, Ellen R. M. ; Komada, Tomoko
    Surface sediments along a transect from an abyssal site in the northeastern Pacific (Station M, 34°50′N, 123°00′W) to a small mountainous river on the California coast (Santa Clara River) were studied to investigate the sources and cycling of organic matter on the continental margin. Sediment samples were separated into organic compound fractions (extractable lipids, amino acids (THAA), carbohydrates (TCHO), and the acid-insoluble fraction), and their carbon isotope ratios were measured. The Δ14C values of all the THAA and TCHO fractions were greater than −100‰, indicating relatively modern organic carbon (OC) source(s), and rapid cycling of these fractions. In contrast, the Δ14C values of extractable lipids and the acid-insoluble fraction were distinctly lower than those of the THAA and TCHO fractions. The Δ14C values of source OC to the sediments were estimated using a simple mixed layer model. These values were lower than the Δ14C signatures of pre-industrial plankton suggesting input of both old OC and contemporary plankton to the margin sediments. The source of old OC at the 2000-m site was likely from laterally transported coastal sediment. The estimated low Δ14C value of the transported OC suggests that old lipids and acid-insoluble material were selectively transported to the 2000-m site. The contribution of riverine POC to the margin sediments were estimated from Δ14C and δ13C values and indicate that relict OC exported by rivers was an important source of old lipids and acid-insoluble material to sedimentary OC on the shelf.
  • Article
    Carbon isotope ratios of organic compound fractions in oceanic suspended particles
    (American Geophysical Union, 2006-12-09) Hwang, Jeomshik ; Druffel, Ellen R. M.
    To study cycling of organic fractions in the ocean, relative abundances and radio- and stable-carbon isotope measurements of total lipid extract, acid-soluble, and acid-insoluble fractions of suspended particulate organic carbon (POC) were made. Changes in relative abundances occurred mostly in the upper 1000 m of the water column, with a decrease in total lipid extract and the acid-soluble fraction and an increase in the acid-insoluble fraction with increasing depth. We found lower Δ14C values for total lipid extract and the acid-insoluble fraction than for the acid-soluble fraction, which is consistent with the previous suggestion of incorporation of dissolved organic carbon and/or resuspended sediment to POC (Druffel and Williams, 1990; Sherrell et al., 1998). The Δ14C values of these fractions in a given organic carbon pool must be understood in terms of acquisition of 14C-depleted carbon from other carbon pools in addition to aging within the reservoir.
  • Article
    Two centuries of limited variability in subtropical North Atlantic thermocline ventilation
    (Nature Publishing Group, 2012-05-01) Goodkin, Nathalie F. ; Druffel, Ellen R. M. ; Hughen, Konrad A. ; Doney, Scott C.
    Ventilation and mixing of oceanic gyres is important to ocean-atmosphere heat and gas transfer, and to mid-latitude nutrient supply. The rates of mode water formation are believed to impact climate and carbon exchange between the surface and mid-depth water over decadal periods. Here, a record of 14C/12C (1780–1940), which is a proxy for vertical ocean mixing, from an annually banded coral from Bermuda, shows limited inter-annual variability and a substantial Suess Effect (the decrease in 14C/12C since 1900). The Sargasso Sea mixing rates between the surface and thermocline varied minimally over the past two centuries, despite changes to mean-hemispheric climate, including the Little Ice Age and variability in the North Atlantic Oscillation. This result indicates that regional formation rates of sub-tropical mode water are stable over decades, and that anthropogenic carbon absorbed by the ocean does not return to the surface at a variable rate.
  • Article
    Photochemical reactivity of ancient marine dissolved organic carbon
    (American Geophysical Union, 2012-09-20) Beaupre, Steven R. ; Druffel, Ellen R. M.
    Marine dissolved organic carbon (DOC) is the largest reservoir of reduced carbon in seawater and persists up to 4,000–6,000 conventional radiocarbon (14C) years on average. Photochemical degradation has been suggested as a geochemical sink for these long-lived molecules, yet there have been no studies relating photochemical lability to the 14C-ages of surface DOC. We observed apparent second order (2°) kinetics with respect to DOC and a strong trend from Δ14C-enriched to depleted values during exhaustive photomineralization of surface marine DOC with high energy UV light. Geochemically, these results suggest that surface DOC is an isotopically-heterogeneous mixture of molecules for which photochemical lability and 14C ages are correlated. Photochemical mineralization may therefore be an important control on the persistence of 14C-depleted DOC in the ocean.
  • Article
    Widespread influence of resuspended sediments on oceanic particulate organic carbon : insights from radiocarbon and aluminum contents in sinking particles
    (American Geophysical Union, 2010-11-20) Hwang, Jeomshik ; Druffel, Ellen R. M. ; Eglinton, Timothy I.
    Particulate organic carbon (POC) in the ocean often exhibits more depleted radiocarbon contents (lower Δ 14C values) than expected if its sole source were POC recently synthesized by primary production and export from the overlying surface waters. An examination of available Δ14C data sets for sinking POC show that this phenomenon is both common and globally widespread. Also, a strong correlation is found to exist between Δ14C values of organic carbon and aluminum content in sinking particles that is consistent over a range of oceanic settings. Together, these findings imply that aged organic carbon associated with lithogenic material from sediment resuspension is responsible for the observed low Δ 14C values as opposed to other processes such as incorporation of dissolved inorganic carbon or dissolved organic carbon into POC at depth. An estimate based on POC flux-weighted Δ14C values shows that about 35% of sinking POC at the locations studied is derived from resuspended sediment. Our results suggest that resuspension of sediment and its subsequent lateral transport is an important component of the oceanic carbon cycle and should be considered in models of oceanic carbon export and burial.
  • Dataset
    Concentrations and radiocarbon signatures of SPE-DOC extracted from seawater samples on GO-SHIP cruises P16N, P18, and IO7N in the North Pacific, Eastern Pacific, and Western Indian Oceans
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-01-19) Druffel, Ellen R.M. ; Lewis, Christian
    This dataset includes concentrations and radiocarbon signatures of solid-phase extracted dissolved organic carbon (SPE-DOC) from seawater samples. Water samples were collected on GO-SHIP cruises P16N, P18, and IO7N in the North Pacific, Eastern Pacific, and Western Indian Oceans from 2015 to 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/853101
  • Article
    Dissolved Organic Radiocarbon in the West Indian Ocean
    (American Geophysical Union, 2023-10-02) Druffel, Ellen R. M. ; Lewis, Christian B. ; Griffin, Sheila ; Flaherty, Alessandra ; Rudresh, Megha ; Hauksson, Niels E. ; Key, Robert M. ; McNichol, Ann P. ; Hwang, Jeomshik ; Walker, Brett D.
    We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C in seawater collected from the West Indian Ocean during the GO-SHIP I07N cruise in 2018. We find bomb 14C in DOC from the upper 1,000 m of the water column. There is no significant change in ∆14C of DOC in deep water northward, unlike that of dissolved inorganic carbon (DIC), suggesting that transport of deep water northward is not controlling the 14C age of DOC. Variability of DOC ∆14C, including high values in the deep waters, is more pronounced than in other oceans, suggesting that dissolution of surface derived particulate organic carbon is a source of modern carbon to deep DOC in the West Indian Ocean. Low δ13C are present at two of the five stations studied, suggesting a source of low δ13C DOC, or additional microbial utilization of deep DOC.
  • Article
    Variable aging and storage of dissolved black carbon in the ocean
    (National Academy of Sciences, 2024-03-22) Coppola, Alysha I. ; Druffel, Ellen R. M. ; Broek, Taylor A. ; Haghipour, Negar ; Eglinton, Timothy I. ; McCarthy, Matthew D. ; Walker, Brett D.
    During wildfires and fossil fuel combustion, biomass is converted to black carbon (BC) via incomplete combustion. BC enters the ocean by rivers and atmospheric deposition contributing to the marine dissolved organic carbon (DOC) pool. The fate of BC is considered to reside in the marine DOC pool, where the oldest BC 14C ages have been measured (>20,000 14C y), implying long-term storage. DOC is the largest exchangeable pool of organic carbon in the oceans, yet most DOC (>80%) remains molecularly uncharacterized. Here, we report 14C measurements on size-fractionated dissolved BC (DBC) obtained using benzene polycarboxylic acids as molecular tracers to constrain the sources and cycling of DBC and its contributions to refractory DOC (RDOC) in a site in the North Pacific Ocean. Our results reveal that the cycling of DBC is more dynamic and heterogeneous than previously believed though it does not comprise a single, uniformly “old” 14C age. Instead, both semilabile and refractory DBC components are distributed among size fractions of DOC. We report that DBC cycles within DOC as a component of RDOC, exhibiting turnover in the ocean on millennia timescales. DBC within the low-molecular-weight DOC pool is large, environmentally persistent and constitutes the size fraction that is responsible for long-term DBC storage. We speculate that sea surface processes, including bacterial remineralization (via the coupling of photooxidation of surface DBC and bacterial co-metabolism), sorption onto sinking particles and surface photochemical oxidation, modify DBC composition and turnover, ultimately controlling the fate of DBC and RDOC in the ocean.