Cornuelle Bruce D.

No Thumbnail Available
Last Name
Cornuelle
First Name
Bruce D.
ORCID
0000-0003-2110-3319

Search Results

Now showing 1 - 16 of 16
  • Article
    Towards an end-to-end analysis and prediction system for weather, climate, and marine applications in the Red Sea
    (American Meteorological Society, 2021-01-01) Hoteit, Ibrahim ; Abualnaja, Yasser ; Afzal, Shehzad ; Ait-El-Fquih, Boujemaa ; Akylas, Triantaphyllos ; Antony, Charls ; Dawson, Clint N. ; Asfahani, Khaled ; Brewin, Robert J. W. ; Cavaleri, Luigi ; Cerovecki, Ivana ; Cornuelle, Bruce D. ; Desamsetti, Srinivas ; Attada, Raju ; Dasari, Hari ; Sanchez-Garrido, Jose ; Genevier, Lily ; El Gharamti, Mohamad ; Gittings, John A. ; Gokul, Elamurugu ; Gopalakrishnan, Ganesh ; Guo, Daquan ; Hadri, Bilel ; Hadwiger, Markus ; Hammoud, Mohammed Abed ; Hendershott, Myrl ; Hittawe, Mohamad ; Karumuri, Ashok ; Knio, Omar ; Kohl, Armin ; Kortas, Samuel ; Krokos, George ; Kunchala, Ravi ; Issa, Leila ; Lakkis, Issam ; Langodan, Sabique ; Lermusiaux, Pierre F. J. ; Luong, Thang ; Ma, Jingyi ; Le Maitre, Olivier ; Mazloff, Matthew R. ; El Mohtar, Samah ; Papadopoulos, Vassilis P. ; Platt, Trevor ; Pratt, Lawrence J. ; Raboudi, Naila ; Racault, Marie-Fanny ; Raitsos, Dionysios E. ; Razak, Shanas ; Sanikommu, Sivareddy ; Sathyendranath, Shubha ; Sofianos, Sarantis S. ; Subramanian, Aneesh C. ; Sun, Rui ; Titi, Edriss ; Toye, Habib ; Triantafyllou, George ; Tsiaras, Kostas ; Vasou, Panagiotis ; Viswanadhapalli, Yesubabu ; Wang, Yixin ; Yao, Fengchao ; Zhan, Peng ; Zodiatis, George
    The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.
  • Article
    Thermohaline structure in the California Current System : observations and modeling of spice variance
    (American Geophysical Union, 2012-02-03) Todd, Robert E. ; Rudnick, Daniel L. ; Mazloff, Matthew R. ; Cornuelle, Bruce D. ; Davis, Russ E.
    Upper ocean thermohaline structure in the California Current System is investigated using sustained observations from autonomous underwater gliders and a numerical state estimate. Both observations and the state estimate show layers distinguished by the temperature and salinity variability along isopycnals (i.e., spice variance). Mesoscale and submesoscale spice variance is largest in the remnant mixed layer, decreases to a minimum below the pycnocline near 26.3 kg m−3, and then increases again near 26.6 kg m−3. Layers of high (low) meso- and submesoscale spice variance are found on isopycnals where large-scale spice gradients are large (small), consistent with stirring of large-scale gradients to produce smaller scale thermohaline structure. Passive tracer adjoint calculations in the state estimate are used to investigate possible mechanisms for the formation of the layers of spice variance. Layers of high spice variance are found to have distinct origins and to be associated with named water masses; high spice variance water in the remnant mixed layer has northerly origin and is identified as Pacific Subarctic water, while the water in the deeper high spice variance layer has southerly origin and is identified as Equatorial Pacific water. The layer of low spice variance near 26.3 kg m−3 lies between the named water masses and does not have a clear origin. Both effective horizontal diffusivity, κh, and effective diapycnal diffusivity, κv, are elevated relative to the diffusion coefficients set in the numerical simulation, but changes in κh and κv with depth are not sufficient to explain the observed layering of thermohaline structure.
  • Article
    The role of air-sea interactions in atmospheric rivers: Case studies using the SKRIPS regional coupled model
    (American Geophysical Union, 2021-02-12) Sun, Rui ; Subramanian, Aneesh C. ; Cornuelle, Bruce D. ; Mazloff, Matthew R. ; Miller, Arthur J. ; Ralph, F. Martin
    Atmospheric rivers (ARs) play a key role in California's water supply and are responsible for most of the extreme precipitation and major flooding along the west coast of North America. Given the high societal impact, it is critical to improve our understanding and prediction of ARs. This study uses a regional coupled ocean–atmosphere modeling system to make hindcasts of ARs up to 14 days. Two groups of coupled runs are highlighted in the comparison: (1) ARs occurring during times with strong sea surface temperature (SST) cooling and (2) ARs occurring during times with weak SST cooling. During the events with strong SST cooling, the coupled model simulates strong upward air–sea heat fluxes associated with ARs; on the other hand, when the SST cooling is weak, the coupled model simulates downward air–sea heat fluxes in the AR region. Validation data shows that the coupled model skillfully reproduces the evolving SST, as well as the surface turbulent heat transfers between the ocean and atmosphere. The roles of air–sea interactions in AR events are investigated by comparing coupled model hindcasts to hindcasts made using persistent SST. To evaluate the influence of the ocean on ARs we analyze two representative variables of AR intensity, the vertically integrated water vapor (IWV) and integrated vapor transport (IVT). During strong SST cooling AR events the simulated IWV is improved by about 12% in the coupled run at lead times greater than one week. For IVT, which is about twice more variable, the improvement in the coupled run is about 5%.
  • Article
    Impacts of ocean currents on the South Indian Ocean extratropical storm track through the relative wind effect
    (American Meteorological Society, 2021-10-21) Seo, Hyodae ; Song, Hajoon ; O’Neill, Larry W. ; Mazloff, Matthew R. ; Cornuelle, Bruce D.
    This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air–sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.
  • Article
    Simulated tomographic reconstruction of ocean features using drifting acoustic receivers and a navigated source
    (Acoustical Society of America, 1995-10) Duda, Timothy F. ; Pawlowicz, Richard A. ; Lynch, James F. ; Cornuelle, Bruce D.
    Numerically simulated acoustic transmission from a single source of known position (for example, suspended from a ship) to receivers of partially known position (for example, sonobuoys dropped from the air) are used for tomographic mapping of ocean sound speed. The maps are evaluated for accuracy and utility. Grids of 16 receivers are employed, with sizes of 150, 300, and 700 km square. Ordinary statistical measures are used to evaluate the pattern similarity and thus the mapping capability of the system. For an array of 300 km square, quantitative error in the maps grows with receiver position uncertainty. The large and small arrays show lesser mapping capability than the mid-size array. Mapping errors increase with receiver position uncertainty for uncertainties less than 1000-m rms, but uncertainties exceeding that have less systematic effect on the maps. Maps of rms error of the field do not provide a complete view of the utility of the acoustic network. Features of maps are surprisingly reproducible for different navigation error levels, and give comparable information about mesoscale structures despite great variations in those levels.
  • Article
    Putting it all together: Adding value to the global ocean and climate observing systems with complete self-consistent ocean state and parameter estimates.
    (Frontiers Media, 2019-03-04) Heimbach, Patrick ; Fukumori, Ichiro ; Hill, Christopher N. ; Ponte, Rui M. ; Stammer, Detlef ; Wunsch, Carl ; Campin, Jean-Michel ; Cornuelle, Bruce D. ; Fenty, Ian ; Forget, Gael ; Kohl, Armin ; Mazloff, Matthew R. ; Menemenlis, Dimitris ; Nguyen, An T. ; Piecuch, Christopher G. ; Trossman, David S. ; Verdy, Ariane ; Wang, Ou ; Zhang, Hong
    In 1999, the consortium on Estimating the Circulation and Climate of the Ocean (ECCO) set out to synthesize the hydrographic data collected by the World Ocean Circulation Experiment (WOCE) and the satellite sea surface height measurements into a complete and coherent description of the ocean, afforded by an ocean general circulation model. Twenty years later, the versatility of ECCO's estimation framework enables the production of global and regional ocean and sea-ice state estimates, that incorporate not only the initial suite of data and its successors, but nearly all data streams available today. New observations include measurements from Argo floats, marine mammal-based hydrography, satellite retrievals of ocean bottom pressure and sea surface salinity, as well as ice-tethered profiled data in polar regions. The framework also produces improved estimates of uncertain inputs, including initial conditions, surface atmospheric state variables, and mixing parameters. The freely available state estimates and related efforts are property-conserving, allowing closed budget calculations that are a requisite to detect, quantify, and understand the evolution of climate-relevant signals, as mandated by the Coupled Model Intercomparison Project Phase 6 (CMIP6) protocol. The solutions can be reproduced by users through provision of the underlying modeling and assimilation machinery. Regional efforts have spun off that offer increased spatial resolution to better resolve relevant processes. Emerging foci of ECCO are on a global sea level changes, in particular contributions from polar ice sheets, and the increased use of biogeochemical and ecosystem data to constrain global cycles of carbon, nitrogen and oxygen. Challenges in the coming decade include provision of uncertainties, informing observing system design, globally increased resolution, and moving toward a coupled Earth system estimation with consistent momentum, heat and freshwater fluxes between the ocean, atmosphere, cryosphere and land.
  • Article
    Structure and evolution of the cold dome off northeastern Taiwan : a numerical study
    (The Oceanography Society, 2013-03) Gopalakrishnan, Ganesh ; Cornuelle, Bruce D. ; Gawarkiewicz, Glen G. ; McClean, Julie L.
    Numerous observational and modeling studies of ocean circulation surrounding Taiwan have reported occurrences of cold water and doming of isotherms (called the cold dome) that result in the formation of coastal upwelling on the northeastern Taiwan shelf. We use a high-resolution (1/24°) ocean model based on the Massachusetts Institute of Technology general circulation model to study the evolution of this distinct shelf-slope circulation phenomenon. We performed a number of model simulations spanning a five-year period (2004–2008) using realistic atmospheric forcing and initial and open boundary conditions. The model solutions were compared with satellite measurements of sea surface height (SSH), sea surface temperature (SST), and historical temperature and salinity observations. The model showed a realistically shaped cold dome with a diameter of ~ 100 km and temperature of ~ 3°C below the ambient shelf waters at 50 m depth. The occurrences of simulated cold dome events appeared to be connected with the seasonal variability of the Kuroshio Current. The model simulations showed more upwelling events during spring and summer when the core of the Kuroshio tends to migrate away from the east coast of Taiwan, compared to fall and winter when the core of the Kuroshio is generally found closer to the east coast of Taiwan. The model also reproduced weak cyclonic circulation associated with the upwelling off northeastern Taiwan. We analyzed the spatio-temporal variability of the cold dome using the model solution as a proxy and designed a "cold dome index" based on the temperature at 50 m depth averaged over a 0.5° × 0.5° box centered at 25.5°N, 122°E. The cold dome index correlates with temperature at 50 m depth in a larger region, suggesting the spatial extent of the cold dome phenomenon. The index had correlation maxima of 0.78 and 0.40 for simulated SSH and SST, respectively, in and around the cold dome box region, and we hypothesize that it is a useful indicator of upwelling off northeastern Taiwan. In addition, both correlation and composite analysis between the temperature at 50 m depth and the East Taiwan Channel transport showed no cold dome events during low-transport events (often in winter) and more frequent cold dome events during high-transport events (often in summer). The simulated cold dome events had time scales of about two weeks, and their centers aligned roughly along a northeastward line starting from the northeastern tip of Taiwan.
  • Article
    Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability
    (Frontiers Media, 2019-08-08) Subramanian, Aneesh C. ; Balmaseda, Magdalena A. ; Centurioni, Luca R. ; Chattopadhyay, Rajib ; Cornuelle, Bruce D. ; DeMott, Charlotte ; Flatau, Maria ; Fujii, Yosuke ; Giglio, Donata ; Gille, Sarah T. ; Hamill, Thomas M. ; Hendon, Harry ; Hoteit, Ibrahim ; Kumar, Arun ; Lee, Jae-Hak ; Lucas, Andrew J. ; Mahadevan, Amala ; Matsueda, Mio ; Nam, SungHyun ; Paturi, Shastri ; Penny, Stephen G. ; Rydbeck, Adam ; Sun, Rui ; Takaya, Yuhei ; Tandon, Amit ; Todd, Robert E. ; Vitart, Frederic ; Yuan, Dongliang ; Zhang, Chidong
    Subseasonal-to-seasonal (S2S) forecasts have the potential to provide advance information about weather and climate events. The high heat capacity of water means that the subsurface ocean stores and re-releases heat (and other properties) and is an important source of information for S2S forecasts. However, the subsurface ocean is challenging to observe, because it cannot be measured by satellite. Subsurface ocean observing systems relevant for understanding, modeling, and forecasting on S2S timescales will continue to evolve with the improvement in technological capabilities. The community must focus on designing and implementing low-cost, high-value surface and subsurface ocean observations, and developing forecasting system capable of extracting their observation potential in forecast applications. S2S forecasts will benefit significantly from higher spatio-temporal resolution data in regions that are sources of predictability on these timescales (coastal, tropical, and polar regions). While ENSO has been a driving force for the design of the current observing system, the subseasonal time scales present new observational requirements. Advanced observation technologies such as autonomous surface and subsurface profiling devices as well as satellites that observe the ocean-atmosphere interface simultaneously can lead to breakthroughs in coupled data assimilation (CDA) and coupled initialization for S2S forecasts. These observational platforms should also be tested and evaluated in ocean observation sensitivity experiments with current and future generation CDA and S2S prediction systems. Investments in the new ocean observations as well as model and DA system developments can lead to substantial returns on cost savings from disaster mitigation as well as socio–economic decisions that use S2S forecast information.
  • Article
    Circulation and intrusions northeast of Taiwan : chasing and predicting uncertainty in the cold dome
    (The Oceanography Society, 2011-12) Gawarkiewicz, Glen G. ; Jan, Sen ; Lermusiaux, Pierre F. J. ; McClean, Julie L. ; Centurioni, Luca R. ; Taylor, Kevin ; Cornuelle, Bruce D. ; Duda, Timothy F. ; Wang, Joe ; Yang, Yiing-Jang ; Sanford, Thomas B. ; Lien, Ren-Chieh ; Lee, Craig M. ; Lee, Ming-An ; Leslie, Wayne ; Haley, Patrick J. ; Niiler, Pearn P. ; Gopalakrishnan, Ganesh ; Velez-Belchi, Pedro ; Lee, Dong-Kyu ; Kim, Yoo Yin
    An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the "cold dome" frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome's dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broad-scale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7–8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.
  • Article
    Assessment of numerical simulations of deep circulation and variability in the Gulf of Mexico using recent observations
    (American Meteorological Society, 2020-04-08) Morey, Steven L. ; Gopalakrishnan, Ganesh ; Pallás-Sanz, Enric ; Azevedo Correia De Souza, Joao Marcos ; Donohue, Kathleen A. ; Pérez-Brunius, Paula ; Dukhovskoy, Dmitry S. ; Chassignet, Eric P. ; Cornuelle, Bruce D. ; Bower, Amy S. ; Furey, Heather H. ; Hamilton, Peter ; Candela, Julio
    Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (>1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
  • Article
    The Kuroshio and Luzon Undercurrent east of Luzon Island
    (The Oceanography Society, 2015-12) Lien, Ren-Chieh ; Ma, Barry ; Lee, Craig M. ; Sanford, Thomas B. ; Mensah, Vigan ; Centurioni, Luca R. ; Cornuelle, Bruce D. ; Gopalakrishnan, Ganesh ; Gordon, Arnold L. ; Chang, Ming-Huei ; Jayne, Steven R. ; Yang, Yiing-Jang
    Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
  • Article
    A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean
    (Acoustical Society of America, 1999-06) Worcester, Peter F. ; Cornuelle, Bruce D. ; Dzieciuch, Matthew A. ; Munk, Walter H. ; Howe, Bruce M. ; Mercer, James A. ; Spindel, Robert C. ; Colosi, John A. ; Metzger, Kurt ; Birdsall, Theodore G. ; Baggeroer, Arthur B.
    Broadband acoustic signals were transmitted during November 1994 from a 75-Hz source suspended near the depth of the sound-channel axis to a 700-m long vertical receiving array approximately 3250 km distant in the eastern North Pacific Ocean. The early part of the arrival pattern consists of raylike wave fronts that are resolvable, identifiable, and stable. The later part of the arrival pattern does not contain identifiable raylike arrivals, due to scattering from internal-wave-induced sound-speed fluctuations. The observed ray travel times differ from ray predictions based on the sound-speed field constructed using nearly concurrent temperature and salinity measurements by more than a priori variability estimates, suggesting that the equation used to compute sound speed requires refinement. The range-averaged oceansound speed can be determined with an uncertainty of about 0.05 m/s from the observed ray travel times together with the time at which the near-axial acoustic reception ends, used as a surrogate for the group delay of adiabatic mode 1. The change in temperature over six days can be estimated with an uncertainty of about 0.006 °C. The sensitivity of the travel times to ocean variability is concentrated near the ocean surface and at the corresponding conjugate depths, because all of the resolved ray arrivals have upper turning depths within a few hundred meters of the surface.
  • Thesis
    Inverse methods and results from the 1981 Ocean Acoustic Tomography Experiment
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1983-04) Cornuelle, Bruce D.
    Ocean acoustic tomography was proposed in 1978 by Munk and Wunsch as a possible technique for monitoring the evolution of temperature, density, and current fields over large regions. In 1981, the Ocean Tomography Group deployed four 224 Hz acoustic sources and five receivers in an array which fit within a box 300 km. on a side centered on 26°N, 70°W (southwest of Bermuda). The experiment was intended both to demonstrate the practicality of tomography as an observation tool and to extend the understanding of mesoscale evolution in the low-energy region far from the strong Gulf Stream recirculation. The propagation of 224 Hz sound energy in the ocean can be described as a set of rays traveling from source to receiver, with each ray taking a different path through the ocean in a vertical plane connecting the source and receiver. The sources transmitted a phase-coded signal which was processed at the receiver to produce a pulse at the time of arrival of the signal. Rays can be distinguished by their different pulse travel times, and these travel times change in response to variations in sound speed and current in the ocean through which the rays passed. In order to reconstruct the ocean variations from the observed travel time changes, it is necessary to specify models for both the variations and their effect on the travel times. The dependence of travel time on the oceanic sound speed and current fields can be calculated using ray paths traced by computer. The vertical structure of the sound speed and current fields in the ocean were modelled as a combination of Empirical Orthogonal Functions (EOFs) from MODE. The horizontal structure was continuous, but was constrained to have a gaussian covariance with a 100 km. e- folding scale. The resulting estimator closely resembles objective mapping as used in meteorology and physical oceanography. The tomographic system has at present only been used to estimate sound speed structure for comparison with the traditional measurements, especially the first two NOAA CTD surveys, but the method provides means for estimating density, temperature or velocity fields, and these will be produced in the future. The sound speed estimates made using the tomographic system match the traditional measurements to within the associated error bars, and there are several possibilities for improving the signal to noise ratio of the data. Given high-precision data, tomographic systems can resolve ocean structures at small scales, such as in the Gulf Stream, or at large scales, over entire ocean basins. Work is in progress to evaluate the usefulness of tomography as an observation tool in these applications.
  • Article
    Integrated observations of global surface winds, currents, and waves: Requirements and challenges for the next decade
    (Frontiers Media, 2019-07-24) Villas Bôas, Ana B. ; Ardhuin, Fabrice ; Ayet, Alex ; Bourassa, Mark A. ; Brandt, Peter ; Chapron, Bertrand ; Cornuelle, Bruce D. ; Farrar, J. Thomas ; Fewings, Melanie R. ; Fox-Kemper, Baylor ; Gille, Sarah T. ; Gommenginger, Christine ; Heimbach, Patrick ; Hell, Momme C. ; Li, Qing ; Mazloff, Matthew R. ; Merrifield, Sophia T. ; Mouche, Alexis ; Rio, Marie H. ; Rodriguez, Ernesto ; Shutler, Jamie D. ; Subramanian, Aneesh C. ; Terrill, Eric ; Tsamados, Michel ; Ubelmann, Clement ; van Sebille, Erik
    Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction “hot-spots,” and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.
  • Article
    Acoustic travel-time variability observed on a 150-km radius tomographic array in the Canada Basin during 2016–2017
    (Acoustical Society of America, 2023-05-02) Worcester, Peter F. ; Dzieciuch, Matthew A. ; Vazquez, Heriberto J. ; Cornuelle, Bruce D. ; Colosi, John A. ; Krishfield, Richard A. ; Kemp, John N.
    The Arctic Ocean is undergoing dramatic changes in response to increasing atmospheric concentrations of greenhouse gases. The 2016–2017 Canada Basin Acoustic Propagation Experiment was conducted to assess the effects of the changes in the sea ice and ocean structure in the Beaufort Gyre on low-frequency underwater acoustic propagation and ambient sound. An ocean acoustic tomography array with a radius of 150 km that consisted of six acoustic transceivers and a long vertical receiving array measured the impulse responses of the ocean at a variety of ranges every four hours using broadband signals centered at about 250 Hz. The peak-to-peak low-frequency travel-time variability of the early, resolved ray arrivals that turn deep in the ocean was only a few tens of milliseconds, roughly an order of magnitude smaller than observed in previous tomographic experiments at similar ranges, reflecting the small spatial scale and relative sparseness of mesoscale eddies in the Canada Basin. The high-frequency travel-time fluctuations were approximately 2 ms root-mean-square, roughly comparable to the expected measurement uncertainty, reflecting the low internal-wave energy level. The travel-time spectra show increasing energy at lower frequencies and enhanced semidiurnal variability, presumably due to some combination of the semidiurnal tides and inertial variability.
  • Article
    Observations of sound-speed fluctuations on the New Jersey continental shelf in the summer of 2006
    (Acoustical Society of America, 2012-02) Colosi, John A. ; Duda, Timothy F. ; Lin, Ying-Tsong ; Lynch, James F. ; Newhall, Arthur E. ; Cornuelle, Bruce D.
    Environmental sensors moored on the New Jersey continental shelf tracked constant density surfaces (isopycnals) for 35 days in the summer of 2006. Sound-speed fluctuations from internal-wave vertical isopycnal displacements and from temperature/salinity variability along isopycnals (spiciness) are analyzed using frequency spectra and vertical covariance functions. Three varieties of internal waves are studied: Diffuse broadband internal waves (akin to waves fitting the deep water Garrett/Munk spectrum), internal tides, and, to a lesser extent, nonlinear internal waves. These internal-wave contributions are approximately distinct in the frequency domain. It is found that in the main thermocline spicy thermohaline structure dominates the root mean square sound-speed variability, with smaller contributions coming from (in order) nonlinear internal waves, diffuse internal waves, and internal tides. The frequency spectra of internal-wave displacements and of spiciness have similar form, likely due to the advection of variable-spiciness water masses by horizontal internal-wave currents, although there are technical limitations to the observations at high frequency. In the low-frequency, internal-wave band the internal-wave spectrum follows frequency to the −1.81 power, whereas the spice spectrum shows a −1.73 power. Mode spectra estimated via covariance methods show that the diffuse internal-wave spectrum has a smaller mode bandwidth than Garrett/Munk and that the internal tide has significant energy in modes one through three.