Crump Byron C.

No Thumbnail Available
Last Name
Crump
First Name
Byron C.
ORCID

Search Results

Now showing 1 - 10 of 10
  • Article
    Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration
    (Nature Publishing Group, 2017-10-03) Ward, Collin P. ; Nalven, Sarah G. ; Crump, Byron C. ; Kling, George W. ; Cory, Rose M.
    In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO2. This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.
  • Article
    Bacterial biogeography across the Amazon river-ocean continuum
    (Frontiers Media, 2017-05-23) Doherty, Mary ; Yager, Patricia L. ; Moran, Mary Ann ; Coles, Victoria J. ; Fortunato, Caroline S. ; Krusche, Alex V. ; Medeiros, Patricia M. ; Payet, Jérôme P. ; Richey, Jeffrey E. ; Satinsky, Brandon ; Sawakuchi, Henrique O. ; Ward, Nicholas D. ; Crump, Byron C.
    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
  • Article
    Microbial players and processes involved in phytoplankton bloom utilization in the water column of a fast-flowing, river-dominated estuary
    (John Wiley & Sons, 2017-03-20) Smith, Maria W. ; Herfort, Lydie ; Fortunato, Caroline S. ; Crump, Byron C. ; Simon, Holly M.
    Fueled by seasonal phytoplankton blooms, the Columbia River estuary is a natural bioreactor for organic matter transformations. Prior metagenome analyses indicated high abundances of diverse Bacteroidetes taxa in estuarine samples containing phytoplankton. To examine the hypothesis that Bacteroidetes taxa have important roles in phytoplankton turnover, we further analyzed metagenomes from water collected along a salinity gradient at 0, 5, 15, 25, and 33 PSU during bloom events. Size fractions were obtained by using a 3-μm prefilter and 0.2-μm collection filter. Although this approach targeted bacteria by removing comparatively large eukaryotic cells, the metagenome from the ES-5 sample (5 PSU) nevertheless contained an abundance of diatom DNA. Biogeochemical measurements and prior studies indicated that this finding resulted from the leakage of cellular material due to freshwater diatom lysis at low salinity. Relative to the other metagenomes, the bacterial fraction of ES-5 was dramatically depleted of genes annotated as Bacteroidetes and lysogenic bacteriophages, but was overrepresented in DNA of protists and Myxococcales bacterivores. We suggest the following equally plausible scenarios for the microbial response to phytoplankton lysis: (1) Bacteroidetes depletion in the free-living fraction may at least in part be caused by their attachment to fluvial diatoms as the latter are lysed upon contact with low-salinity estuarine waters; (2) diatom particle colonization is likely followed by rapid bacterial growth and lytic phage infection, resulting in depletion of lysogenic bacteriophages and host bacteria; and (3) the subsequent availability of labile organic matter attracted both grazers and predators to feed in this estuarine biogeochemical “hotspot,” which may have additionally depleted Bacteroidetes populations. These results represent the first detailed molecular analysis of the microbial response to phytoplankton lysis at the freshwater–brackish water interface in the fast-flowing Columbia River estuary.
  • Article
    Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source
    (American Society for Microbiology, 2003-04) Crump, Byron C. ; Kling, George W. ; Bahr, Michele ; Hobbie, John E.
    Seasonal shifts in bacterioplankton community composition in Toolik Lake, a tundra lake on the North Slope of Alaska, were related to shifts in the source (terrestrial versus phytoplankton) and lability of dissolved organic matter (DOM). A shift in community composition, measured by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes, occurred at 4°C in near-surface waters beneath seasonal ice and snow cover in spring. This shift was associated with an annual peak in bacterial productivity ([14C]leucine incorporation) driven by the large influx of labile terrestrial DOM associated with snow meltwater. A second shift occurred after the flux of terrestrial DOM had ended in early summer as ice left the lake and as the phytoplankton community developed. Bacterioplankton communities were composed of persistent populations present throughout the year and transient populations that appeared and disappeared. Most of the transient populations could be divided into those that were advected into the lake with terrestrial DOM in spring and those that grew up from low concentrations during the development of the phytoplankton community in early summer. Sequencing of DNA in DGGE bands demonstrated that most bands represented single ribotypes and that matching bands from different samples represented identical ribotypes. Bacteria were identified as members of globally distributed freshwater phylogenetic clusters within the {alpha}- and ß-Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides group, and the Actinobacteria.
  • Preprint
    Deciphering ocean carbon in a changing world
    ( 2016-01-13) Moran, Mary Ann ; Kujawinski, Elizabeth B. ; Stubbins, Aron ; Fatland, Rob ; Aluwihare, Lihini I. ; Buchan, Alison ; Crump, Byron C. ; Dorrestein, Pieter C. ; Dyhrman, Sonya T. ; Hess, Nancy J. ; Howe, Bill ; Longnecker, Krista ; Medeiros, Patricia M. ; Niggemann, Jutta ; Obernosterer, Ingrid ; Repeta, Daniel J. ; Waldbauer, Jacob R.
    Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.
  • Article
    Microbial biogeography along an estuarine salinity gradient : combined influences of bacterial growth and residence time
    (American Society for Microbiology, 2004-03) Crump, Byron C. ; Hopkinson, Charles S. ; Sogin, Mitchell L. ; Hobbie, John E.
    Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([14C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and Actinobacteria. Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.
  • Article
    Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment
    (Ecological Society of America, 2007-06) Crump, Byron C. ; Adams, Heather E. ; Hobbie, John E. ; Kling, George W.
    Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communities in streams draining lakes were similar to communities in lakes. In a connected series of lakes and streams, the stream communities changed with distance from the upstream lake and with changes in water chemistry, suggesting inoculation and dilution with bacteria from soil waters or hyporheic zones. In the same system, lakes shared similar bacterioplankton communities (78% similar) that shifted gradually down the catchment. In contrast, unconnected lakes contained somewhat different communities (67% similar). We found evidence that dispersal influences bacterioplankton communities via advection and dilution (mass effects) in streams, and via inoculation and subsequent growth in lakes. The spatial pattern of bacterioplankton community composition was strongly influenced by interactions among soil water, stream, and lake environments. Our results reveal large differences in lake-specific and stream-specific bacterial community composition over restricted spatial scales (<10 km) and suggest that geographic distance and connectivity influence the distribution of bacterioplankton communities across a landscape.
  • Article
    Microbial gene abundance and expression patterns across a river to ocean salinity gradient
    (Public Library of Science, 2015-11-04) Fortunato, Caroline S. ; Crump, Byron C.
    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity.
  • Article
    Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima
    (John Wiley & Sons, 2017-08-06) Herfort, Lydie ; Crump, Byron C. ; Fortunato, Caroline S. ; McCue, Lee-Ann ; Campbell, Victoria ; Simon, Holly M. ; Baptista, Antonio ; Zuber, Peter
    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production (3H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1–24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2–3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the existence of three particle types characterized by different bacterial communities in ETM, ETM-impacted, and non-ETM-impacted brackish waters. Taxonomic analysis suggests that ETM key biological function is to remineralize organic matter.
  • Article
    Rapid screening for freshwater bacterial groups by using reverse line blot hybridization
    (American Society for Microbiology, 2003-10) Zwart, Gabriel ; van Hannen, Erik J. ; Kamst-van Agterveld, Miranda P. ; Van der Gucht, Katleen ; Lindstrom, Eva S. ; Van Wichelen, Jeroen ; Lauridsen, Torben ; Crump, Byron C. ; Han, Suk-Kyun ; Declerck, Steven
    The identification of phylogenetic clusters of bacteria that are common in freshwater has provided a basis for probe design to target important freshwater groups. We present a set of 16S ribosomal RNA gene-based oligonucleotide probes specific for 15 of these freshwater clusters. The probes were applied in reverse line blot hybridization, a simple method that enables the rapid screening of PCR products from many samples against an array of probes. The optimized assay was made stringent to discriminate at approximately the single-mismatch level. This made 10 of the probes highly specific, with at least two mismatches to the closest noncluster member in the global database. Screening of PCR products from bacterioplankton of 81 diverse lakes from Belgium, The Netherlands, Denmark, Sweden, and Norway showed that the respective probes were reactive against 5 to 100% of the lake samples. Positive reactivity of six highly specific probes showed that bacteria from actinobacterial clusters ACK-M1 and Sta2-30 and from verrucomicrobial cluster CLO-14 occurred in at least 90% of the investigated lakes. Furthermore, bacteria from alpha-proteobacterial cluster LD12 (closely related to the marine SAR11 cluster), beta-proteobacterial cluster LD28 and cyanobacterial cluster Synechococcus 6b occurred in more than 70% of the lakes. Reverse line blot hybridization is a new tool in microbial ecology that will facilitate research on distribution and habitat specificity of target species at relatively low costs.