Gangopadhyay Avijit

No Thumbnail Available
Last Name
Gangopadhyay
First Name
Avijit
ORCID
0000-0002-7412-7325

Search Results

Now showing 1 - 14 of 14
  • Article
    Seasonal evolution of oceanic upper layer processes in the northern Bay of Bengal following a single Argo float
    (American Geophysical Union, 2019-04-24) Shee, Abhijit ; Sil, Sourav ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Ravichandran, M.
    Seasonal evolution of the barrier layer (BL) and temperature inversion in the northern Bay of Bengal and their role on the mixed layer temperature (MLT) is examined using observations from a single Argo during December 2013 to July 2017. During fall, low salinity at surface generates BL in this region. It thickens to almost 80 m in winter enhanced by deepening of isothermal layer depth due to remote forcing. During winter, surface cooling lowers near‐surface temperature, and thus, the subsurface BL experiences a significant temperature inversion (~2.5 °C). This temperature inversion diffuses to distribute heat within ML and surface heating begins deep penetration of shortwave radiation through ML during spring. Hence, the ML becomes thermally well stratified, resulting in the warmest MLT. The Monin‐Obukhov length attains its highest value during summer indicating wind dominance in the ML. During spring and fall, upper ocean gains heat allowing buoyancy to dominate over wind mixing.
  • Article
    The changing nature of shelf-break exchange revealed by the OOI Pioneer Array
    (The Oceanography Society, 2018-02-09) Gawarkiewicz, Glen G. ; Todd, Robert E. ; Zhang, Weifeng G. ; Partida, Jacob ; Gangopadhyay, Avijit ; Monim, Mahmud-Ul-Hasan ; Fratantoni, Paula S. ; Mercer, Anna Malek ; Dent, Margaret
    Although the continental shelf and slope south of New England have been the subject of recent studies that address decadal-scale warming and interannual variability of water mass properties, it is not well understood how these changes affect shelf-break exchange processes. In recent years, observations of anomalous shelf and slope conditions obtained from the Ocean Observatories Initiative Pioneer Array and other regional observing programs suggest that onshore intrusions of warm, salty waters are becoming more prevalent. Mean cross-shelf transects constructed from Pioneer Array glider observations collected from April 2014 through December 2016 indicate that slope waters have been warmer and saltier. We examine shelf-break exchange events and anomalous onshore intrusions of warm, salty water associated with warm core rings located near the shelf break in spring 2014 and winter 2017 using observations from the Pioneer Array and other sources. We also describe an additional cross-shelf intrusion of ring water in September 2014 to demonstrate that the occurrence of high-salinity waters extending across the continental shelf is rare. Observations from the Pioneer Array and other sources show warm core ring and Gulf Stream water masses intrude onto the continental shelf more frequently and penetrate further onshore than in previous decades.
  • Dataset
    Yearly census of Gulf Stream Warm Core Ring formation from 1980 to 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-05-08) Gangopadhyay, Avijit ; Gawarkiewicz, Glen
    Yearly census of Gulf Stream Warm Core Ring formation from 1980 to 2017. This continuous census file contains the formation and demise times and locations, and the area at formation for all 961 WCRs formed between 1980 and 2017 that lived for a week or more. Each row represents a unique Warm Core Ring and is identified by a unique alphanumeric code 'WEyyyymmddA', where 'WE' represents a Warm Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'A' represents the sequential sighting of the eddies in a particular year. For example, the first ring in 2017 having a trailing alphabet of 'E' indicates that four rings were carried over from 2016 which are still observed on January 1, 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/810182
  • Article
    Forecasting the Gulf Stream path using buoyancy and wind forcing over the North Atlantic
    (American Geophysical Union, 2021-07-28) Silver, Adrienne M. ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Taylor, Arnold ; Sanchez-Franks, Alejandra
    Fluctuations in the path of the Gulf Stream (GS) have been previously studied by primarily connecting to either the wind-driven subtropical gyre circulation or buoyancy forcing via the subpolar gyre. Here we present a statistical model for 1 year predictions of the GS path (represented by the GS northern wall—GSNW) between 75°W and 65°W incorporating both mechanisms in a combined framework. An existing model with multiple parameters including the previous year's GSNW index, center location, and amplitude of the Icelandic Low and the Southern Oscillation Index was augmented with basin-wide Ekman drift over the Azores High. The addition of the wind is supported by a validation of the simpler two-layer Parsons-Veronis model of GS separation over the last 40 years. A multivariate analysis was carried out to compare 1-year-in-advance forecast correlations from four different models. The optimal predictors of the best performing model include: (a) the GSNW index from the previous year, (b) gyre-scale integrated Ekman Drift over the past 2 years, and (c) longitude of the Icelandic Low center lagged by 3 years. The forecast correlation over the 27 years (1994–2020) is 0.65, an improvement from the previous multi-parameter model's forecast correlation of 0.52. The improvement is attributed to the addition of the wind-drift component. The sensitivity of forecasting the GS path after extreme atmospheric years is quantified. Results indicate the possibility of better understanding and enhanced predictability of the dominant wind-driven variability of the Atlantic Meridional Overturning Circulation and of fisheries management models that use the GS path as a metric.
  • Article
    Shifting seasonality of cyclones and western boundary current interactions in Bay of Bengal as observed during Amphan and Fani
    (Nature Research, 2021-11-11) Sil, Sourav ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Pramanik, Saikat
    In recent years, the seasonal patterns of Tropical Cyclones (TC) in the Bay of Bengal have been shifting. While tropical depressions have been common in March–May (spring), they typically have been relatively weaker than the TCs during October–December. Here we show that the spatial pattern of recent warming trends during the last two decades in the southwestern Bay has allowed for stronger springtime pre-monsoon cyclones such as Amphan (May 2020, Super Cyclone) and Fani (April–May 2019, Extremely Severe Cyclone). The tracks of the pre-monsoon cyclones shifted westward, concurrent with an increasing rate of warming. This shift allowed both Fani and Amphan tracks to cross the northeastward warm Western Boundary Current (WBC) and associated warm anti-cyclonic eddies, while the weaker Viyaru (April 2013, Cyclonic Storm) did not interact with the WBC. A quantitative model linking the available along-track heat potential to cyclone’s intensity is developed to understand the impact of the WBC on cyclone intensification. The influence of the warming WBC and associated anti-cyclonic eddies will likely result in much stronger springtime TCs becoming relatively common in the future.
  • Working Paper
    United States contributions to the Second International Indian Ocean Expedition (US IIOE-2)
    (US Steering Committee, 2018-10-23) Hood, Raleigh R. ; Beal, Lisa M. ; Benway, Heather M. ; Chandler, Cynthia L. ; Coles, Victoria J. ; Cutter, Gregory A. ; Dick, Henry J. B. ; Gangopadhyay, Avijit ; Goes, Joachim I. ; Humphris, Susan E. ; Landry, Michael R. ; Lloyd, Karen G. ; McPhaden, Michael J. ; Murtugudde, Raghu ; Subrahmanyam, Bulusu ; Susanto, R. Dwi ; Talley, Lynne D. ; Wiggert, Jerry D. ; Zhang, Chidong
    From the Preface: The purpose of this document is to motivate and coordinate U.S. participation in the Second International Indian Ocean Expedition (IIOE-2) by outlining a core set of research priorities that will accelerate our understanding of geologic, oceanic, and atmospheric processes and their interactions in the Indian Ocean. These research priorities have been developed by the U.S. IIOE-2 Steering Committee based on the outcomes of an interdisciplinary Indian Ocean science workshop held at the Scripps Institution of Oceanography on September 11-13, 2017. The workshop was attended by 70 scientists with expertise spanning climate, atmospheric sciences, and multiple sub-disciplines of oceanography. Workshop participants were largely drawn from U.S. academic institutions and government agencies, with a few experts invited from India, China, and France to provide a broader perspective on international programs and activities and opportunities for collaboration. These research priorities also build upon the previously developed International IIOE-2 Science Plan and Implementation Strategy. Outcomes from the workshop are condensed into five scientific themes: Upwelling, inter-ocean exchanges, monsoon dynamics, inter-basin contrasts, marine geology and the deep ocean. Each theme is identified with priority questions that the U.S. research community would like to address and the measurements that need to be made in the Indian Ocean to address them.
  • Article
    Spatial variability of movement, structure, and formation of Warm Core Rings in the Northwest Atlantic Slope Sea
    (American Geophysical Union, 2022-08-16) Silver, Adrienne M. ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Andres, Magdalena ; Flierl, Glenn R. ; Clark, Jenifer
    Gulf Stream Warm Core Rings (WCRs) have important influences on the New England Shelf and marine ecosystems. A 10-year (2011–2020) WCR dataset that tracks weekly WCR locations and surface areas is used here to identify the rings' path and characterize their movement between 55 and 75°W. The WCR dataset reveals a very narrow band between 66 and 71°W along which rings travel almost due west along ∼39°N across isobaths – the “Ring Corridor.” Then, west of the corridor, the mean path turns southwestward, paralleling the shelfbreak. The average ring translation speed along the mean path is 5.9 cm s−1. Long-lived rings (lifespan >150 days) tend to occupy the region west of the New England Seamount Chain (NESC) whereas short-lived rings (lifespan <150 days) tend to be more broadly distributed. WCR vertical structures, analyzed using available Argo float profiles indicate that rings that are formed to the west of the NESC have shallower thermoclines than those formed to the east. This tendency may be due to different WCR formation processes that are observed to occur along different sections of the Gulf Stream. WCRs formed to the east of the NESC tend to form from a pinch-off mechanism incorporating cores of Sargasso Sea water and a perimeter of Gulf Stream water. WCRs that form to the west of the NESC, form from a process called an aneurysm. WCRs formed through aneurysms comprise water mostly from the northern half of the Gulf Stream and are smaller than the classic pinch-off rings.
  • Article
    Interannual and seasonal asymmetries in gulf stream ring formations from 1980 to 2019
    (Nature Research, 2021-01-26) Silver, Adrienne M. ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Silva, E. Nishchitha S. ; Clark, Jenifer
    As the Gulf Stream separates from the coast, it sheds both Warm and Cold Core Rings between 75∘ and 55∘W. We present evidence that this ring formation behavior has been asymmetric over both interannual and seasonal time-scales. After a previously reported regime-shift in 2000, 15 more Warm Core Rings have been forming yearly compared to 1980–1999. In contrast, there have been no changes in the annual formation rate of the Cold Core Rings. This increase in Warm Core Ring production leads to an excess heat transfer of 0.10 PW to the Slope Sea, amounting to 7.7–12.4% of the total Gulf Stream heat transport, or 5.4–7.3% of the global oceanic heat budget at 30∘N. Seasonally, more Cold Core Rings are produced in the winter and spring and more Warm Core Rings are produced in the summer and fall leading to more summertime heat transfer to the north of the Stream. The seasonal cycle of relative ring formation numbers is strongly correlated (r = 0.82) with that of the difference in upper layer temperatures between the Sargasso and Slope seas. This quantification motivates future efforts to understand the recent increasing influence of the Gulf Stream on the circulation and ecosystem in the western North Atlantic.
  • Article
    An observed regime shift in the formation of warm core rings from the gulf stream
    (Nature Research, 2019-08-23) Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Silva, E. Nishchitha S. ; Monim, Mahmud-Ul-Hasan ; Clark, Jenifer
    We present observational evidence that a significant regime change occurred around the year 2000 in the formation of Warm Core Rings (WCRs) from the Gulf Stream (GS) between 75° and 55°W. The dataset for this study is a set of synoptic oceanographic charts available over the thirty-eight-year period of 1980–2017. The upward regime change shows an increase to 33 WCRs per year during 2000–2017 from an average of 18 WCRs during 1980 to 1999. A seasonal analysis confirms May-June-July as the peak time for WCR births in agreement with earlier studies. The westernmost region (75°-70°W) is least ring-productive, while the region from 65°W to 60°W is most productive. This regime shift around 2000 is detected in WCR formation for all of the four 5-degree wide sub-regions and the whole region (75°-55°W). This might be related to a reduction of the deformation radius for ring formation, allowing unstable meanders to shed more frequent rings in recent years. A number of possible factors resulting in such a regime shift related to the possible changes in reduced gravity, instability, transport of the GS, large-scale changes in the wind system and atmospheric fluxes are outlined, which suggest new research directions. The increase in WCRs has likely had an impact on the marine ecosystem since 2000, a topic worthy for future studies.
  • Article
    A survival analysis of the gulf stream warm core rings
    (American Geophysical Union, 2020-10-14) Silva, E. Nishchitha S. ; Gangopadhyay, Avijit ; Fay, Gavin ; Welandawe, Manushi K. V. ; Gawarkiewicz, Glen G. ; Silver, Adrienne M. ; Monim, Mahmud-Ul-Hasan ; Clark, Jenifer
    Survival of Gulf Stream (GS) warm core rings (WCRs) was investigated using a census consisting of a total of 961 rings formed during the period 1980–2017. Kaplan‐Meier survival probability and Cox hazard proportional models were used for the analysis. The survival analysis was performed for rings formed in four 5° zones between 75° W and 55° W. The radius, latitude, and distance from the shelf‐break of a WCR at formation all had a significant effect on the survival of WCRs. A pattern of higher survival was observed in WCRs formed in Zone 2 (70°–65° W) or Zone 3 (65°–60° W) and then demised in Zone 1 (75°–70° W). Survival probability of the WCRs increased to more than 70% for those formed within a latitude band from 39.5° to 41.5° N. Survival probability is reduced when the WCRs are formed near the New England Seamounts.
  • Article
    Shelf break exchange processes influence the availability of the northern shortfin squid, Illex illecebrosus, in the Northwest Atlantic
    (Wiley, 2023-04-14) Salois, Sarah L. ; Hyde, Kimberly J. W. ; Silver, Adrienne ; Lowman, Brooke A. ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen ; Mercer, Anna J. M. ; Manderson, John P. ; Gaichas, Sarah K. ; Hocking, Daniel J. ; Galuardi, Benjamin ; Jones, Andrew W. ; Kaelin, Jeff ; DiDomenico, Greg ; Almeida, Katie ; Bright, Bill ; Lapp, Meghan
    The United States Northern Shortfin squid fishery is known for its large fluctuations in catch at annual scales. In the last 5 years, this fishery has experienced increased availability of Illex illecebrosus along the Northeast US continental shelf (NES), resulting in high catch per unit effort (CPUE) and early fishery closures due to quota exceedance. The fishery occurs within the Northwest Atlantic, whose complex dynamics are set up by the interplay between the large‐scale Gulf Stream, mesoscale eddies, Shelfbreak Jet, and shelf‐slope exchange processes. Our ability to understand and quantify this regional variability is requisite for understanding the availability patterns of Illex, which are largely influenced by oceanographic conditions. In an effort to advance our current understanding of the seasonal and interannual variability in this species' relative abundance on the NES, we used generalized additive models to examine the relationships between the physical environment and hotspots of productivity to changes in CPUE of I. illecebrosus in the Southern stock component, which comprises the US fishery. Specifically, we derived oceanographic indicators by pairing high‐resolution remote sensing data and global ocean reanalysis physical data to high‐resolution fishery catch data. We identified a suite of environmental covariates that were strongly related to instances of higher catch rates. In particular, bottom temperature, warm core rings, subsurface features, and frontal dynamics together serve as indicators of habitat condition and primary productivity hotspots, providing great utility for understanding the distribution of Illex with the potential for forecasting seasonal and interannual availability.
  • Article
    Increased gulf stream warm core ring formations contributes to an observed increase in salinity maximum intrusions on the Northeast Shelf
    (Nature Research, 2023-05-09) Silver, Adrienne ; Gangopadhyay, Avijit ; Gawarkiewicz, Glen ; Fratantoni, Paula ; Clark, Jenifer
    We present observational evidence of a significant increase in Salinity Maximum intrusions in the Northeast US Shelf waters in the years following 2000. This increase is subsequent to and influenced by a previously observed regime-shift in the annual formation rate for Gulf Stream Warm Core Rings, which are relatively more saline than the shelf waters. Specifically, mid-depth salinity maximum intrusions, a cross-shelf exchange process, has shown a quadrupling in frequency on the shelf after the year 2000. This increase in intrusion frequency can be linked to a similar increase in Warm Core Ring occupancy footprint along the offshore edge of the shelf-break which has greatly increased the abundance of warm salty water within the Slope Sea. The increased ring occupancy footprint along the shelf follows from the near doubling in annual Warm Core Ring formation rate from the Gulf Stream. The increased occurrence of intrusions is likely driven by a combination of a larger number of rings in the slope sea and the northward shift in the GS position which may lead to more interactions between rings and the shelf topography. These results have significant implications for interpreting temporal changes in the shelf ecosystem from the standpoint of both larval recruitment as well as habitability for various important commercial species.
  • Article
    A census of the warm-core rings of the Gulf Stream: 1980-2017
    (American Geophysical Union, 2020-06-29) Gangopadhyay, Avijit ; Gawarkiewicz, Glen G. ; Silva, E. Nishchitha S. ; Silver, Adrienne M. ; Monim, Mahmud-Ul-Hasan ; Clark, Jenifer
    A census of Gulf Stream (GS) warm‐core rings (WCRs) is presented based on 38 years (1980–2017) of data. The census documents formation and demise times and locations, and formation size for all 961 WCRs formed in the study period that live for a week or more. A clear regime shift was observed around the Year 2000 and was reported by a subset of authors (Gangopadhyay et al., 2019, https://doi.org/10.1038/s41598-019-48661-9). The WCR formation over the whole region (75–55°W) increased from an average of 18 per year during Regime 1 (1980–1999) to 33 per year during Regime 2 (2000–2017). For geographic analysis formation locations were grouped in four 5° zones between 75°W and 55°W. Seasonally, WCR formations show a significant summer maxima and winter minima, a pattern that is consistent through all zones and both temporal regimes. The lifespan and size distribution show progressively more rings with higher longevity and greater size when formed to the east of 70°W. The average lifespan of the WCRs in all four zones decreased by 20–40% depending on zones and/or seasons from Regime 1 to Regime 2, while the size distribution remained unchanged across regimes. The ring footprint index, a first‐order signature of impact of the WCRs on the slope, increased significantly (26–90%) for all zones from Regime 1 to Regime 2, with the highest percent increase in Zone 2 (70–65°W). This observational study establishes critical statistical and dynamical benchmarks for validating numerical models and highlights the need for further dynamical understanding of the GS‐ring formation processes.
  • Article
    Synchronicity of the Gulf Stream path downstream of Cape Hatteras and the region of maximum wind stress curl
    (Nature Research, 2024-08-09) Gifford, Ian ; Gangopadhyay, Avijit ; Andres, Magdalena ; Oliver, Hilde ; Gawarkiewicz, Glen G. ; Silver, Adrienne M.
    The Gulf Stream, a major ocean current in the North Atlantic ocean is a key component in the global redistribution of heat and is important for marine ecosystems. Based on 27 years (1993–2019) of wind reanalysis and satellite altimetry measurements, we present observational evidence that the path of this freely meandering jet after its separation from the continental slope at Cape Hatteras, aligns with the region of maximum cyclonic vorticity of the wind stress field known as the positive vorticity pool. This synchronicity between the wind stress curl maximum region and the Gulf Stream path is observed at multiple time-scales ranging from months to decades, spanning a distance of 1500 km between 70 and 55W. The wind stress curl in the positive vorticity pool is estimated to drive persistent upward vertical velocities ranging from 5 to 17 cm day−1 over its ~ 400,000 km2 area; this upwelling may supply a steady source of deep nutrients to the Slope Sea region, and can explain as much as a quarter of estimated primary productivity there.