Polzin Kurt L.

No Thumbnail Available
Last Name
First Name
Kurt L.

Search Results

Now showing 1 - 20 of 38
  • Article
    On the origins of the oceanic ultraviolet catastrophe
    (American Meteorological Society, 2022-03-25) Dematteis, Giovanni ; Polzin, Kurt L. ; Lvov, Yuri V.
    We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean, which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber–frequency (m–ω) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the finescale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solutions are reinstated to the status of “constant-downscale-flux” solutions. This is consequential for an understanding of energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”
  • Article
    Oceanic internal-wave field : theory of scale-invariant spectra
    (American Meteorological Society, 2010-12) Lvov, Yuri V. ; Polzin, Kurt L. ; Tabak, Esteban G. ; Yokoyama, Naoto
    Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest horizontal wavenumbers with extreme scale separations. A small domain is identified in which the scale-invariant collision integral converges and numerically find a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated. The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is introduced into the kinetic equation to determine solutions over the divergent part of the domain using rigorous asymptotic arguments. This gives rise to the induced diffusion regime. The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly nonlinear stationary states are consistent with much of the observational evidence.
  • Article
    Mesoscale eddy dissipation by a "zoo" of submesoscale processes at a western boundary
    (American Geophysical Union, 2020-11-04) Evans, Dafydd Gwyn ; Frajka-Williams, Eleanor E. ; Naveira Garabato, Alberto C. ; Polzin, Kurt L. ; Forryan, Alexander
    Mesoscale eddies are ubiquitous dynamical features that tend to propagate westward and disappear along ocean western boundaries. Using a multiscale observational study, we assess the extent to which eddies dissipate via a direct cascade of energy at a western boundary. We analyze data from a ship‐based microstructure and velocity survey, and an 18‐month mooring deployment, to document the dissipation of energy in anticyclonic and cyclonic eddies impinging on the topographic slope east of the Bahamas, in the North Atlantic Ocean. These observations reveal high levels of turbulence where the steep and rough topographic slope modified the intensified northward flow associated with, in particular, anticyclonic eddies. Elevated dissipation was observed both near‐bottom and at mid depths (200–800 m). Near‐bottom turbulence occurred in the lee of a protruding escarpment, where elevated Froude numbers suggest hydraulic control. Energy was also radiated in the form of upward‐propagating internal waves. Elevated dissipation at mid depths occurred in regions of strong vertical shear, where the topographic slope modified the vertical structure of the northward eddy flow. Here, low Richardson numbers and a local change in the isopycnal gradient of potential vorticity (PV) suggest that the elevated dissipation was associated with horizontal shear instability. Elevated mid‐depth dissipation was also induced by topographic steering of the flow. This led to large anticyclonic vorticity and negative PV adjacent to the topographic slope, suggesting that centrifugal instability underpinned the local enhancement in dissipation. Our results provide a mechanistic benchmark for the realistic representation of eddy dissipation in ocean models.
  • Article
    Mesoscale eddy–internal wave coupling. Part II : energetics and results from PolyMode
    (American Meteorological Society, 2010-04) Polzin, Kurt L.
    The issue of internal wave–mesoscale eddy interactions is revisited. Previous observational work identified the mesoscale eddy field as a possible source of internal wave energy. Characterization of the coupling as a viscous process provides a smaller horizontal transfer coefficient than previously obtained, with vh 50 m2 s−1 in contrast to νh 200–400 m2 s−1, and a vertical transfer coefficient bounded away from zero, with νυ + (f2/N2)Kh 2.5 ± 0.3 × 10−3 m2 s−1 in contrast to νυ + (f2/N2)Kh = 0 ± 2 × 10−2 m2 s−1. Current meter data from the Local Dynamics Experiment of the PolyMode field program indicate mesoscale eddy–internal wave coupling through horizontal interactions (i) is a significant sink of eddy energy and (ii) plays an O(1) role in the energy budget of the internal wave field.
  • Article
    On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products
    (American Meteorological Society, 2013-02) Arbic, Brian K. ; Polzin, Kurt L. ; Scott, Robert B. ; Richman, James G. ; Shriver, Jay F.
    Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
  • Article
    Mixing variability in the Southern Ocean
    (American Meteorological Society, 2015-04) Meyer, Amelie ; Sloyan, Bernadette M. ; Polzin, Kurt L. ; Phillips, Helen E. ; Bindoff, Nathaniel L.
    A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.
  • Article
    Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current.
    (National Academy of Sciences, 2019-07-02) Naveira Garabato, Alberto C. ; Frajka-Williams, Eleanor E. ; Spingys, Carl P. ; Legg, Sonya ; Polzin, Kurt L. ; Forryan, Alexander ; Abrahamsen, E. Povl ; Buckingham, Christian E. ; Griffies, Stephen M. ; McPhail, Stephen D. ; Nicholls, Keith W. ; Thomas, Leif N. ; Meredith, Michael P.
    The overturning circulation of the global ocean is critically shaped by deep-ocean mixing, which transforms cold waters sinking at high latitudes into warmer, shallower waters. The effectiveness of mixing in driving this transformation is jointly set by two factors: the intensity of turbulence near topography and the rate at which well-mixed boundary waters are exchanged with the stratified ocean interior. Here, we use innovative observations of a major branch of the overturning circulation—an abyssal boundary current in the Southern Ocean—to identify a previously undocumented mixing mechanism, by which deep-ocean waters are efficiently laundered through intensified near-boundary turbulence and boundary–interior exchange. The linchpin of the mechanism is the generation of submesoscale dynamical instabilities by the flow of deep-ocean waters along a steep topographic boundary. As the conditions conducive to this mode of mixing are common to many abyssal boundary currents, our findings highlight an imperative for its representation in models of oceanic overturning.
  • Article
    Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate
    (American Meteorological Society, 2014-07) Waterhouse, Amy F. ; MacKinnon, Jennifer A. ; Nash, Jonathan D. ; Alford, Matthew H. ; Kunze, Eric ; Simmons, Harper L. ; Polzin, Kurt L. ; St. Laurent, Louis C. ; Sun, Oliver M. T. ; Pinkel, Robert ; Talley, Lynne D. ; Whalen, Caitlin B. ; Huussen, Tycho N. ; Carter, Glenn S. ; Fer, Ilker ; Waterman, Stephanie N. ; Naveira Garabato, Alberto C. ; Sanford, Thomas B. ; Lee, Craig M.
    The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
  • Article
    Finescale structure of the T-S relation in the eastern North Atlantic
    (American Meteorological Society, 2005-08) Ferrari, Raffaele ; Polzin, Kurt L.
    Distributions of temperature (T) and salinity (S) and their relationship in the oceans are the result of a balance between T–S variability generated at the surface by air–sea fluxes and its removal by molecular dissipation. In this paper the role of different motions in setting the cascade of T–S variance to dissipation scales is quantified using data from the North Atlantic Tracer Release Experiment (NATRE). The NATRE observational programs include fine- and microscale measurements and provide a snapshot of T–S variability across a wide range of scales from basin to molecular. It is found that microscale turbulence controls the rate of thermal dissipation in the thermocline. At this level the T–S relation is established through a balance between large-scale advection by the gyre circulation and small-scale turbulence. Further down, at the level of intermediate and Mediterranean waters, mesoscale eddies are the rate-controlling process. The transition between the two regimes is related to the presence of a strong salinity gradient along density surfaces associated with the outflow of Mediterranean waters. Mesoscale eddies stir this gradient and produce a rich filamentation and salinity-compensated temperature inversions: isopycnal stirring and diapycnal mixing are both required to explain the T–S relation at depth.
  • Thesis
    Observations of turbulence, internal waves and background flows : an inquiry into the relationships between scales of motion
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1992-09) Polzin, Kurt L.
    Oceanic profiles of temperature, salinity, horizontal velocity, rate of dissipation of turbulent kinetic energy (ε) and rate of dissipation of thermal variance (χ) are used to examine the parameterization of turbulent mixing in the ocean due to internal waves. Turbulent mixing is quantified through eddy diffusivity parameterizations of the mass (Kρ; Osborn, 1980) and heat fluxes (Kτ; Osborn and Cox, 1972) in turbulent production/dissipation balances. Turbulence in the ocean is generally held to result from the occurrence of shear instability in regions where the Richardson number is locally supercritical (i.e. Ri ≤ 1/4), permitting the growth of small-scale waves which break and result in turbulent mixing. The occurrence of shear instability results from the local intensification of the shear in the internal wave field. The energy dissipated in such events is provided by the energy flux to higher wavenumber due to nonlinear wave/wave interactions on scales of 10's to 100's of meters. In turn, the strength of the wave/wave interactions depends generally on the energy content of the internal wave field, which can vary considerably over even larger scales due to the presence of topography or background flows. The magnitude of turbulent mixing is linked to internal wave dynamics by equating the turbulent dissipation with the energy flux through the vertical wavenumber spectrum under the priviso that the model spectrum which forms the basis for the analysis is statistically stationary with respect to the nonlinear interactions. Dynamical models (McComas and Muller, 1981; Henyey et al., 1986) indicate that the Garrett and Munk (GM; Munk, 1981) spectrum is stationary. Observations from the far field of a seamount in a region of negligible large-scale flow were examined to address the issue of the buoyancy scaling of ε. These data exhibited large variations in background stratification with depth, but the internal wave characteristics were not substantially differentiable from the GM prescription. The magnitude of ε and its functional dependence upon internal wave energy levels (E) and buoyancy frequency (N) was best described by the dynamical model ofHenyey et al. (1986) (ε ~ E2N2). The Richardson number scaling model of Kunze et al. (1990) produced consistent estimates. A second dynamical model, McComas and Muller (1981), predicted an appropriate (E,N) scaling, but overestimated the observed dissipation rates by a factor of five. Two kinematical dissipation parameterizations (Garmett and Holloway (1984) and Munk (1981)) predicted buoyancy scalings of N3/2 which were inconsistent with the observed scaling. Data from an upper-ocean front, a warm core ring and a region of steep topography were analyzed in order to examine the parameter dependence of E in internal wave fields which exhibited potentially nonstationary characteristics. Evidence was provided which implied the internal wave field in an upper ocean front was interacting with and modified by the background flow. Inhomogeneity and anisotropy of the internal wave field were noted in that data set. The model of Gregg (1989), which in turn was based upon the model of Henyey et al., effectively collapsed the observed diffusivity estimates from the front. The warm core ring profiles were noted to be anisotropic, dominated by near-inertial frequencies and to have a peaked vertical wavenumber shear spectrum. The data from a region of steep topography were noted to have a peaked vertical wavenumber spectrum and were characterized by higher than GM frequency motions. For the latter two data sets, application of a frequency based correction to the Henyey et al. model (Henyey, 1991) reduced more than an order of magnitude scatter in the parameterized estimates of E to less than a factor of four. Of the possible non-equilibrium conditions in the internal wave field, the (E,N) scaled dissipation rates were most sensitive to deviations in wave field frequency content. On the basis of a number of theoretical Richardson number probability distributions (Ri = N2/S2, where S2 is the sum of the squared vertical derivatives of horizontal velocity), the nominal dissipation scaling of the Kunze et al. model was determined to be E2N3. This scaling is altered to the observed ε ~ E2N2 scaling by a statistical dependence between N2 and S2 which reduces the occurrence of supercritical Ri values. This statistical dependence is hypothesized to be an effect of the turbulent momentum and buoyancy fluxes on the internal wave shear and strain profiles caused by shear instability. The statistical dependence between N2 and S2 exhibited a buoyancy scaling which was interpreted as resulting from the decreasing ratio between the time scale of the shear instability mechanism [T- 2π/N] and the adiabatic time scale [T - 2π/(Nf)1/2] of the internal wave field (f is the Coriolis parameter). This phenomenology is interpreted in light of saturated spectral theories which suggest that the magnitude and shape of the vertical wavenumber spectrum is controlled by instability mechanisms at large wavenumber ( ≥ .1 cpm). We argue that saturated spectral theories are valid only in the limit where a separation exists between the two time scales, i.e. for large N, low internal wave frequency content, and small f. These results have immediate implications for oceanic mixing driven by internal wave motions. First, background diffusivities are small: at GM energy levels, Kρ - .03x10-4 m2/s (Kρ = .25ε/N2). Secondly, since Kρ is independent of N at constant E, some process or collection of processes must be responsible for heightened E values in the abyss if internal waves cause the 0(1-10x10-4 m2/s) diffusivities generally inferred from deep ocean hydrographic data. We view internal wave reflection and/or internal wave generation associated with topographic features to be likely candidates.
  • Dataset
    How variable is mixing efficiency in the abyss?
    (Woods Hole Oceanographic Institution, 2020-03-02) Ijichi, Takashi ; St. Laurent, Louis C. ; Polzin, Kurt L. ; Toole, John M.
    This directory contains BBTRE/DoMORE processed data (“all_BBTRE.mat” and “all_DoMORE.mat”) that was used to produce all figures in the above research letter. Each mat file has two structure arrays named “location” and “patch10”. The “location” array includes microstructure profile information used in this study (Table D1). The “patch10” array includes 10-m patch-wise parameter estimates used in this study (Table D2). Note that bulk averaged parameters can be constructed from parameters saved in “patch10” (see the above paper).
  • Article
    Internal waves and turbulence in the Antarctic Circumpolar Current
    (American Meteorological Society, 2013-02) Waterman, Stephanie N. ; Naveira Garabato, Alberto C. ; Polzin, Kurt L.
    This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.
  • Article
    A microscale view of mixing and overturning across the Antarctic Circumpolar Current
    (American Meteorological Society, 2016-01) Naveira Garabato, Alberto C. ; Polzin, Kurt L. ; Ferrari, Raffaele ; Zika, Jan D. ; Forryan, Alexander
    The relative roles of isoneutral stirring by mesoscale eddies and dianeutral stirring by small-scale turbulence in setting the large-scale temperature–salinity relation of the Southern Ocean against the action of the overturning circulation are assessed by analyzing a set of shear and temperature microstructure measurements across Drake Passage in a “triple decomposition” framework. It is shown that a picture of mixing and overturning across a region of the Antarctic Circumpolar Current (ACC) may be constructed from a relatively modest number of microstructure profiles. The rates of isoneutral and dianeutral stirring are found to exhibit distinct, characteristic, and abrupt variations: most notably, a one to two orders of magnitude suppression of isoneutral stirring in the upper kilometer of the ACC frontal jets and an order of magnitude intensification of dianeutral stirring in the subpycnocline and deepest layers of the ACC. These variations balance an overturning circulation with meridional flows of O(1) mm s−1 across the ACC’s mean thermohaline structure. Isoneutral and dianeutral stirring play complementary roles in balancing the overturning, with isoneutral processes dominating in intermediate waters and the Upper Circumpolar Deep Water and dianeutral processes prevailing in lighter and denser layers.
  • Article
    Mixing and transformation in a deep western boundary current: a case study
    (American Meteorological Society, 2021-03-29) Spingys, Carl P. ; Naveira Garabato, Alberto C. ; Legg, Sonya ; Polzin, Kurt L. ; Abrahamsen, E. Povl ; Buckingham, Christian E. ; Forryan, Alexander ; Frajka-Williams, Eleanor E.
    Water-mass transformation by turbulent mixing is a key part of the deep-ocean overturning, as it drives the upwelling of dense waters formed at high latitudes. Here, we quantify this transformation and its underpinning processes in a small Southern Ocean basin: the Orkney Deep. Observations reveal a focusing of the transport in density space as a deep western boundary current (DWBC) flows through the region, associated with lightening and densification of the current’s denser and lighter layers, respectively. These transformations are driven by vigorous turbulent mixing. Comparing this transformation with measurements of the rate of turbulent kinetic energy dissipation indicates that, within the DWBC, turbulence operates with a high mixing efficiency, characterized by a dissipation ratio of 0.6 to 1 that exceeds the common value of 0.2. This result is corroborated by estimates of the dissipation ratio from microstructure observations. The causes of the transformation are unraveled through a decomposition into contributions dependent on the gradients in density space of the: dianeutral mixing rate, isoneutral area, and stratification. The transformation is found to be primarily driven by strong turbulence acting on an abrupt transition from the weakly stratified bottom boundary layer to well-stratified off-boundary waters. The reduced boundary layer stratification is generated by a downslope Ekman flow associated with the DWBC’s flow along sloping topography, and is further regulated by submesoscale instabilities acting to restratify near-boundary waters. Our results provide observational evidence endorsing the importance of near-boundary mixing processes to deep-ocean overturning, and highlight the role of DWBCs as hot spots of dianeutral upwelling.
  • Article
    Scaling turbulent dissipation in the transition layer
    (American Meteorological Society, 2013-11) Sun, Oliver M. T. ; Jayne, Steven R. ; Polzin, Kurt L. ; Rahter, Bryan A. ; St. Laurent, Louis C.
    Data from three midlatitude, month-long surveys are examined for evidence of enhanced vertical mixing associated with the transition layer (TL), here defined as the strongly stratified layer that exists between the well mixed layer and the thermocline below. In each survey, microstructure estimates of turbulent dissipation were collected concurrently with fine-structure stratification and shear. Survey-wide averages are formed in a “TL coordinate” zTL, which is referenced around the depth of maximum stratification for each profile. Averaged profiles show characteristic TL structures such as peaks in stratification N2 and shear variance S2, which fall off steeply above zTL = 0 and more gradually below. Turbulent dissipation rates ɛ are 5–10 times larger than those found in the upper thermocline (TC). The gradient Richardson number Ri = N2/S2 becomes unstable (Ri < 0.25) within ~10 m of the TL upper boundary, suggesting that shear instability is active in the TL for zTL > 0. Ri is stable for zTL ≤ 0. Turbulent dissipation is found to scale exponentially with depth for zTL ≤ 0, but the decay scales are different for the TL and upper TC: ɛ scales well with either N2 or S2. Owing to the strong correlation between S2 and N2, existing TC scalings of the form ɛ ~ |S|p|N|q overpredict variations in ɛ. The scale dependence of shear variance is not found to significantly affect the scalings of ɛ versus N2 and S2 for zTL ≤ 0. However, the onset of unstable Ri at the top of the TL is sensitively dependent to the resolution of the shears.
  • Article
    Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing
    (American Meteorological Society, 2013-03) Melet, Angelique ; Hallberg, Robert ; Legg, Sonya ; Polzin, Kurt L.
    The ocean interior stratification and meridional overturning circulation are largely sustained by diapycnal mixing. The breaking of internal tides is a major source of diapycnal mixing. Many recent climate models parameterize internal-tide breaking using the scheme of St. Laurent et al. While this parameterization dynamically accounts for internal-tide generation, the vertical distribution of the resultant mixing is ad hoc, prescribing energy dissipation to decay exponentially above the ocean bottom with a fixed-length scale. Recently, Polzin formulated a dynamically based parameterization, in which the vertical profile of dissipation decays algebraically with a varying decay scale, accounting for variable stratification using Wentzel–Kramers–Brillouin (WKB) stretching. This study compares two simulations using the St. Laurent and Polzin formulations in the Climate Model, version 2G (CM2G), ocean–ice–atmosphere coupled model, with the same formulation for internal-tide energy input. Focusing mainly on the Pacific Ocean, where the deep low-frequency variability is relatively small, the authors show that the ocean state shows modest but robust and significant sensitivity to the vertical profile of internal-tide-driven mixing. Therefore, not only the energy input to the internal tides matters, but also where in the vertical it is dissipated.
  • Article
    Climate Process Team on internal wave–driven ocean mixing
    (American Meteorological Society, 2017-12-01) MacKinnon, Jennifer A. ; Zhao, Zhongxiang ; Whalen, Caitlin B. ; Waterhouse, Amy F. ; Trossman, David S. ; Sun, Oliver M. ; St. Laurent, Louis C. ; Simmons, Harper L. ; Polzin, Kurt L. ; Pinkel, Robert ; Pickering, Andrew I. ; Norton, Nancy J. ; Nash, Jonathan D. ; Musgrave, Ruth C. ; Merchant, Lynne M. ; Melet, Angelique ; Mater, Benjamin D. ; Legg, Sonya ; Large, William G. ; Kunze, Eric ; Klymak, Jody M. ; Jochum, Markus ; Jayne, Steven R. ; Hallberg, Robert ; Griffies, Stephen M. ; Diggs, Stephen ; Danabasoglu, Gokhan ; Chassignet, Eric P. ; Buijsman, Maarten C. ; Bryan, Frank O. ; Briegleb, Bruce P. ; Barna, Andrew ; Arbic, Brian K. ; Ansong, Joseph ; Alford, Matthew H.
    Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
  • Article
    Boundary mixing in Orkney Passage outflow
    (John Wiley & Sons, 2014-12-16) Polzin, Kurt L. ; Naveira Garabato, Alberto C. ; Abrahamsen, E. Povl ; Jullion, Loic ; Meredith, Michael P.
    One of the most remarkable features of contemporary oceanic climate change is the warming and contraction of Antarctic Bottom Water over much of global ocean abyss. These signatures represent changes in ventilation mediated by mixing and entrainment processes that may be location-specific. Here we use available data to document, as best possible, those mixing processes as Weddell Sea Deep and Bottom Waters flow along the South Orkney Plateau, exit the Weddell Sea via Orkney Passage and fill the abyssal Scotia Sea. First, we find that an abrupt transition in topography upstream of Orkney Passage delimits the extent of the coldest waters along the Plateau's flanks and may indicate a region of especially intense mixing. Second, we revisit a control volume budget by Heywood et al. (2002) for waters trapped within the Scotia Sea after entering through Orkney Passage. This budget requires extremely vigorous water mass transformations with a diapycnal transfer coefficient of inline image m2 s−1. Evidence for such intense diapycnal mixing is not found in the abyssal Scotia Sea interior and, while we do find large rates of diapycnal mixing in conjunction with a downwelling Ekman layer on the western side of Orkney Passage, it is insufficient to close the budget. This leads us to hypothesize that the Heywood budget is closed by a boundary mixing process in which the Ekman layer associated with the Weddell Sea Deep Water boundary current experiences relatively large vertical scale overturning associated with tidal forcing along the southern boundary of the Scotia Sea.
  • Article
    How variable is mixing efficiency in the abyss?
    (American Geophysical Union, 2020-03-28) Ijichi, Takashi ; St. Laurent, Louis C. ; Polzin, Kurt L. ; Toole, John M.
    Mixing efficiency is an important turbulent flow property in fluid dynamics, whose variability potentially affects the large‐scale ocean circulation. However, there are several confusing definitions. Here we compare and contrast patch‐wise versus bulk estimates of mixing efficiency in the abyss by revisiting data from previous extensive field surveys in the Brazil Basin. Observed patch‐wise efficiency is highly variable over a wide range of turbulence intensity. Bulk efficiency is dominated by rare extreme turbulence events. In the case where enhanced near‐bottom turbulence is thought to be driven by breaking of small‐scale internal tides, the estimated bulk efficiency is 20%, close to the conventional value of 17%. On the other hand, where enhanced near‐bottom turbulence appears to be convectively driven by hydraulic overflows, bulk efficiency is suggested to be as large as 45%, which has implications for a further significant role of overflow mixing on deep‐water mass transformation.
  • Technical Report
    Turbulence and waves over irregularly sloping topography : cruise report - Oceanus 324
    (Woods Hole Oceanographic Institution, 1999-12) Montgomery, Ellyn T. ; Polzin, Kurt L.
    This report documents the work of R/V Oceanus cruise 324, which occurred during May of 1998. This cruise was the field component of the Turbulence and Waves in Irregularly Sloping Topography (TWIST) program. TWIST was part of the Littoral Internal Wave Initiative (LIW) supported by the Office of Naval Research. The objective of TWIST was to sample the background, internal wave and turbulence properties on the Continental Slope in the Mid-Atlantic Bight. Previous investigations have revealed strongly enhanced finescale internal wavefields and much more energetic turbulence due to internal wave breaking above topographic roughness associated with the Mid-Atlantic Ridge. So, an area of steeply sloping ridges and troughs running perpendicular to the continental slope near 36˚34'N, 74˚39'W was chosen as the site of the observational program due to its topographic similarity to the Mid-Atlantic Ridge. Fíve instrument systems were employed to make observations during this cruise: the High Resolution Profier (HRP), three Moored Profiler (MP) moorings, a Lowered Acoustic Doppler Current Profiler/Conductivity, Temperature, Depth (LADCP/CTD) rosette, eXpendable Current Profilers/eXpendable CTD (XCP/XCTD), and finally, the shipboard ADCP. The data from these instruments (more than 1100 full depth profiles) provide adequate spatial and temporal resolution to describe the finescale and turbulent processes observed.