Kuo Jia-Yu

No Thumbnail Available
Last Name
Kuo
First Name
Jia-Yu
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Mean structure and variability of the cold dome northeast of Taiwan
    (The Oceanography Society, 2011-12) Jan, Sen ; Chen, Chung-Chi ; Tsai, Ya-Ling ; Yang, Yiing-Jang ; Wang, Joe ; Chern, Ching-Sheng ; Gawarkiewicz, Glen G. ; Lien, Ren-Chieh ; Centurioni, Luca R. ; Kuo, Jia-Yu
    The "cold dome" off northeastern Taiwan is one of the distinctive oceanic features in the seas surrounding Taiwan. The cold dome is important because persistent upwelling makes the region highly biologically productive. This article uses historical data, recent observations, and satellite-observed sea surface temperatures (SST) to describe the mean structure and variability of the cold dome. The long-term mean position of the cold dome, using the temperature at 50 m depth as a reference, is centered at 25.625°N, 122.125°E. The cold dome has a diameter of approximately 100 km, and is maintained by cold (< 21°C) and salty (> 34.5) waters upwelled along the continental slope. The ocean currents around the cold dome, although weak, flow counterclockwise. The monsoon-driven winter intrusion of the Kuroshio current onto the East China Sea shelf intensifies the upwelling and carries more subsurface water up to the cold dome than during the summer monsoon season. On a shorter timescale, the cold dome's properties can be significantly modified by the passage of typhoons, which creates favorable physical conditions for short-term Kuroshio intrusions in summer. The surface expression of the cold dome viewed from satellite SST images is often not domelike but instead is an irregular shape with numerous filaments, and thus may contribute substantially to shelf/slope exchange. As a result of persistent upwelling, typhoon passage, and monsoon forcing, higher chlorophyll a concentrations, and thus higher primary productivity, are frequently observed in the vicinity of the cold dome.
  • Article
    Observations of a freshwater pulse induced by Typhoon Morakot off the northern coast of Taiwan in August 2009
    (Sears Foundation for Marine Research, 2013-01-01) Jan, Sen ; Wang, Joe ; Yang, Yiing-Jang ; Hung, Chin-Chang ; Chern, Ching-Sheng ; Gawarkiewicz, Glen G. ; Lien, Ren-Chieh ; Centurioni, Luca R. ; Kuo, Jia-Yu ; Wang, Bee
    In this paper we describe large-scale impacts from a typhoon on the circulation over the continental shelf and slope north of Taiwan. Typhoon Morakot was a category 2 tropical storm that landed in central Taiwan, but caused destruction primarily in southern Taiwan from Aug. 8–10, 2009. The typhoon brought record-breaking rainfall; approximately 3 m accumulated over four days in southern Taiwan. River discharge on the west coast of Taiwan increased rapidly from Aug. 6–7 and peaked on Aug. 8, yielding a total volume 27.2 km3 of freshwater discharged off the west coast of Taiwan over five days (Aug. 6–10). The freshwater mixed with ambient seawater, and was carried primarily by the northeastward-flowing Taiwan Strait current to the sea off the northern coast of Taiwan. Two joint surveys each measured the hydrography and current velocity in the Taiwan Strait and off the northeastern coast of Taiwan roughly one week and two and a half weeks after Morakot. The first survey observed an Ω-shaped freshwater pulse off the northern tip of Taiwan, in which the salinity was ∼1 lower than the climatological mean salinity. The freshwater pulse met the Kuroshio and formed a density front off the northeastern coast of Taiwan. The hydrographic data obtained in the second survey suggested that the major freshwater pulse left the sea off the northern and northeastern coasts of Taiwan, which may have been carried by the Kuroshio to the northeast. Biogeochemical sampling conducted after Morakot suggested that the concentrations of nutrients in the upper ocean off the northern coast of Taiwan increased remarkably compared with their normal values. A typhoon-induced biological bloom is attributed to the inputs both from the nutrient-rich river runoff and upwelling of the subsurface Kuroshio water.