Pfister Catherine

No Thumbnail Available
Last Name
Pfister
First Name
Catherine
ORCID
0000-0003-0892-637X

Search Results

Now showing 1 - 5 of 5
  • Dataset
    Temperature and light time series in the Strait of Juan de Fuca, fall 2009 (Regenerated Nitrogen project)
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-09-30) Pfister, Catherine
    Temperature and light levels for 41 intertidal locations at 5 sites in the Strait of Juan de Fuca, 2009. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/514182
  • Dataset
    The role of regenerated nitrogen for rocky shore productivity, Cape Flattery, Washington, 2010 & 2011
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2014-02-04) Pather, Santhiska ; Pfister, Catherine A. ; Altabet, Mark A. ; Post, David
    Stable isotope tracers were added to exposed tidepools utilizing them as temporary mesocosms to quantify N transformation rates (Pather et al.,L&O). Large tracer signals were observed over the typical 4-5 hr experimental period in both the dilution of the isotope label in its added form (NH4+ or NO3-) and the appearance of the label in products (e.g. NO2-) The primary advantage was that all members of community participated in the experiment allowing us to recognize the complexity of nitrogen cycling in this system. A full dataset description is included in the supplemental file 'project-data-description.pdf'. Field names are included in the files, '*_params.csv'
  • Article
    Microbial associations with macrobiota in coastal ecosystems : patterns and implications for nitrogen cycling
    (John Wiley & Sons, 2016-05-02) Moulton, Orissa M. ; Altabet, Mark A. ; Beman, J. Michael ; Deegan, Linda A. ; Lloret, Javier ; Lyons, Meaghan K. ; Nelson, James A. ; Pfister, Catherine
    In addition to their important effects on nitrogen (N) cycling via excretion and assimilation (by macrofauna and macroflora, respectively), many macrobiota also host or facilitate microbial taxa responsible for N transformations. Interest in this topic is expanding, especially as it applies to coastal marine systems where N is a limiting nutrient. Our understanding of the diversity of microbes associated with coastal marine macrofauna (invertebrate and vertebrate animals) and macrophytes (seaweeds and marine plants) is improving, and recent studies indicate that the collection of microbes living in direct association with macrobiota (the microbiome) may directly contribute to N cycling. Here, we review the roles that macrobiota play in coastal N cycling, review current knowledge of macrobial–microbial associations in terms of N processing, and suggest implications for coastal ecosystem function as animals are harvested and as foundational habitat is lost or degraded. Given the biodiversity of microbial associates of macrobiota, we advocate for more research into the functional consequences of these associations for the coastal N cycle.
  • Article
    Exploring B/Ca as a pH proxy in bivalves : relationships between Mytilus californianus B/Ca and environmental data from the northeast Pacific
    (Copernicus Publications on behalf of the European Geosciences Union, 2011-09-13) McCoy, S. J. ; Robinson, Laura F. ; Pfister, Catherine A. ; Wootton, J. T. ; Shimizu, Nobumichi
    A distinct gap in our ability to understand changes in coastal biology that may be associated with recent ocean acidification is the paucity of directly measured ocean environmental parameters at coastal sites in recent decades. Thus, many researchers have turned to sclerochronological reconstructions of water chemistry to document the historical seawater environment. In this study, we explore the relationships between B/Ca and pH to test the feasibility of B/Ca measured on the ion probe as a pH proxy in the California mussel, Mytilus californianus. Heterogeneity in a range of ion microprobe standards is assessed, leading to reproducible B/Ca ratios at the 5% level. The B/Ca data exhibit large excursions during winter months, which are particularly pronounced during the severe winters of 2004–2005 and 2005–2006. Furthermore, B/Ca ratios are offset in different parts of the skeleton that calcified at the same time. We compare the M. californianus B/Ca record to directly measured environmental data during mussel growth from the period of 1999–2009 to examine whether seawater chemistry or temperature plays a role in controlling shell B/Ca. A suite of growth rate models based on measured temperature are compared to the B/Ca data to optimise the potential fit of B/Ca to pH. Despite sampling conditions that were well-suited to testing a pH control on B/Ca, including a close proximity to an environmental record, a distinct change in pH at the sampling locale, and a growth model designed to optimise the correlations between seawater pH and shell B/Ca, we do not see a strong correlations between pH and shell B/Ca (maximum coefficient of determination, r2, of 0.207). Instead, our data indicate a strong biological control on B/Ca as observed in some other carbonate-forming organisms.
  • Article
    The diversity and functional capacity of microbes associated with coastal macrophytes
    (American Society for Microbiology, 2022-08-22) Miranda, Khashiff ; Weigel, Brooke L. ; Fogarty, Emily C. ; Veseli, Iva A. ; Giblin, Anne E. ; Eren, A. Murat ; Pfister, Catherine A.
    Coastal marine macrophytes exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their hosts through metabolisms that are unique to microbial taxa. Here, we characterized the metabolic functions of macrophyte-associated microbial communities using metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana) and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus, and Zostera marina), including the rhizomes of two surfgrass species (Phyllospadix spp.), the seagrass Zostera marina, and the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we describe 63 metagenome-assembled genomes (MAGs) that potentially benefit from being associated with macrophytes and may contribute to macrophyte fitness through their metabolic activity. Host-associated metagenomes contained genes for the use of dissolved organic matter from hosts and vitamin (B1, B2, B7, B12) biosynthesis in addition to a range of nitrogen and sulfur metabolisms that recycle dissolved inorganic nutrients into forms more available to the host. The rhizosphere of surfgrass and seagrass contained genes for anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite residing in a well-mixed and oxygenated environment. The range of oxygen environments engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial metabolisms and contributes to the functional capabilities of microbes and their influences on carbon and nitrogen cycling in nearshore ecosystems.