Thornalley David J. R.

No Thumbnail Available
Last Name
Thornalley
First Name
David J. R.
ORCID

Search Results

Now showing 1 - 9 of 9
  • Article
    Holocene North Atlantic Overturning in an atmosphere-ocean-sea ice model compared to proxy-based reconstructions
    (John Wiley & Sons, 2015-11-24) Blaschek, Michael ; Renssen, Hans ; Kissel, Catherine ; Thornalley, David J. R.
    Climate and ocean circulation in the North Atlantic region changed over the course of the Holocene, partly because of disintegrating ice sheets and partly because of an orbital-induced insolation trend. In the Nordic Seas, this impact was accompanied by a rather small, but significant, amount of Greenland ice sheet melting. We have employed the EMIC LOVECLIM and compared our model simulations with proxy-based reconstructions of δ13C, sortable silt, and magnetic susceptibility (κ) used to infer changes in past ocean circulation over the last 9000 years. The various reconstructions exhibit different long-term evolutions suggesting changes in either the overturning of the Atlantic in total or of subcomponents of the ocean circulation, such as the overflow waters across the Greenland-Scotland ridge. Thus, the question arises whether these reconstructions are consistent with each other or not. A comparison with model results indicates that δ13C, employed as an indicator of overturning, agrees well with the long-term evolution of the modeled Atlantic meridional overturning circulation (AMOC). The model results suggest that different long-term trends in subcomponents of the AMOC, such as Iceland-Scotland overflow water, are consistent with proxy-based reconstructions and allow some of the reconstructions to be reconciled with the modeled and reconstructed (from δ13C) AMOC evolution. We find a weak early Holocene AMOC, which recovers by 7 kyr B.P. and shows a weak increasing trend of 88 ± 1 mSv/kyr toward present, with relatively low variability on centennial to millennial timescales.
  • Article
    Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation
    (John Wiley & Sons, 2013-05-30) Yu, Jimin ; Thornalley, David J. R. ; Rae, James W. B. ; McCave, I. Nick
    The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (sinistral variety) to reconstruct subsurface water pH and pCO2 changes in the polar North Atlantic during the last deglaciation. Comparison of core-top results with nearby hydrographic data shows that B/Ca in N. pachyderma (s) is mainly controlled by seawater B(OH)4−/HCO3− with a roughly constant partition coefficient of 1.48 ± 0.15 × 10−3 (2σ), and δ11B in this species is offset below δ11B of the borate in seawater by 3.38 ± 0.71‰ (2σ). These values represent our best estimates with the sparse available hydrographic data close to our core-tops. More culturing and sediment trap work is needed to improve our understanding of boron incorporation into N. pachyderma (s). Application of a constant KD of 1.48 × 10−3 to high resolution N. pachyderma (s) B/Ca records from two adjacent cores off Iceland shows that subsurface pCO2 at the habitat depth of N. pachyderma (s) (~50 m) generally followed the atmospheric CO2 trend but with negative offsets of ~10–50 ppmv during 19–10 ka. These B/Ca-based reconstructions are supported by independent estimates from low-resolution δ11B measurements in the same cores. We also calibrate and apply Cd/Ca in N. pachyderma (s) to reconstruct nutrient levels for the same down cores. Like today's North Atlantic, past subsurface pCO2 variability off Iceland was significantly correlated with nutrient changes that might be linked to surface nutrient utilization and mixing within the upper water column. Because surface pCO2 (at 0 m water depth) is always lower than at deeper depths and if the application of a constant KD is valid, our results suggest that the polar North Atlantic has remained a CO2 sink during the calcification seasons of N. pachyderma (s) over the last deglaciation.
  • Article
    Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions
    (John Wiley & Sons, 2013-05-30) Thornalley, David J. R. ; Barker, Stephen ; Becker, Julia ; Hall, Ian R. ; Knorr, Gregor
    Six Ocean Drilling Program (ODP) sites, in the Northwest Atlantic have been used to investigate kinematic and chemical changes in the “Western Boundary Undercurrent” (WBUC) during the development of full glacial conditions across the Marine Isotope Stage 5a/4 boundary (~70,000 years ago). Sortable silt mean grain size inline image measurements are employed to examine changes in near bottom flow speeds, together with carbon isotopes measured in benthic foraminifera and % planktic foraminiferal fragmentation as proxies for changes in water-mass chemistry. A depth transect of cores, spanning 1.8–4.6 km depth, allows changes in both the strength and depth of the WBUC to be constrained across millennial scale events. inline image measurements reveal that the flow speed structure of the WBUC during warm intervals (“interstadials”) was comparable to modern (Holocene) conditions. However, significant differences are observed during cold intervals, with higher relative flow speeds inferred for the shallow component of the WBUC (~2 km depth) during all cold “stadial” intervals (including Heinrich Stadial 6), and a substantial weakening of the deep component (~3–4 km) during full glacial conditions. Our results therefore reveal that the onset of full glacial conditions was associated with a regime shift to a shallower mode of circulation (involving Glacial North Atlantic Intermediate Water) that was quantitatively distinct from preceding cold stadial events. Furthermore, our chemical proxy data show that the physical response of the WBUC during the last glacial inception was probably coupled to basin-wide changes in the water-mass composition of the deep Northwest Atlantic.
  • Article
    Evidence of silicic acid leakage to the tropical Atlantic via Antarctic Intermediate Water during Marine Isotope Stage 4
    (John Wiley & Sons, 2013-06-27) Griffiths, James D. ; Barker, Stephen ; Hendry, Katharine R. ; Thornalley, David J. R. ; van de Flierdt, Tina ; Hall, Ian R. ; Anderson, Robert F.
    Antarctic Intermediate Water (AAIW) and Subantarctic Mode Water (SAMW) are the main conduits for the supply of dissolved silicon (silicic acid) from the deep Southern Ocean (SO) to the low-latitude surface ocean and therefore have an important control on low-latitude diatom productivity. Enhanced supply of silicic acid by AAIW (and SAMW) during glacial periods may have enabled tropical diatoms to outcompete carbonate-producing phytoplankton, decreasing the relative export of inorganic to organic carbon to the deep ocean and lowering atmospheric pCO2. This mechanism is known as the “silicic acid leakage hypothesis” (SALH). Here we present records of neodymium and silicon isotopes from the western tropical Atlantic that provide the first direct evidence of increased silicic acid leakage from the Southern Ocean to the tropical Atlantic within AAIW during glacial Marine Isotope Stage 4 (~60–70 ka). This leakage was approximately coeval with enhanced diatom export in the NW Atlantic and across the eastern equatorial Atlantic and provides support for the SALH as a contributor to CO2 drawdown during full glacial development.
  • Preprint
    A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period
    ( 2015-07) Thornalley, David J. R. ; Bauch, H. A. ; Gebbie, Geoffrey A. ; Guo, Weifu ; Ziegler, Martin ; Bernasconi, Stefano M. ; Barker, Stephen ; Skinner, Luke C. ; Yu, Jimin
    Changes in the formation of dense water in the Arctic Ocean and Nordic Seas (the ‘Arctic Mediterranean’, AM) likely contributed to the altered climate of the last glacial period. We examine past changes in AM circulation by reconstructing 14C ventilation ages of the deep Nordic Seas over the last 30,000 years. Our results show that the deep glacial AM was extremely poorly ventilated (ventilation ages of up to 10,000 years). Subsequent episodic overflow of aged water into the mid-depth North Atlantic occurred during deglaciation. Proxy data also suggest the deep glacial AM was ~2-3°C warmer than modern; deglacial mixing of the deep AM with the upper ocean thus potentially contributed to melting sea-ice and icebergs, as well as proximal terminal ice-sheet margins.
  • Article
    Consistently dated Atlantic sediment cores over the last 40 thousand years
    (Nature Research, 2019-09-02) Waelbroeck, Claire ; Lougheed, Bryan C. ; Vazquez Riveiros, Natalia ; Missiaen, Lise ; Pedro, Joel ; Dokken, Trond ; Hajdas, Irka ; Wacker, Lukas ; Abbott, Peter ; Dumoulin, Jean-Pascal ; Thil, Francois ; Eynaud, Frederique ; Rossignol, Linda ; Fersi, Wiem ; Albuquerque, Ana Luiza ; Arz, Helge W. ; Austin, William E. N. ; Came, Rosemarie E. ; Carlson, Anders E. ; Collins, James A. ; Dennielou, Bernard ; Desprat, Stéphanie ; Dickson, Alex ; Elliot, Mary ; Farmer, Christa ; Giraudeau, Jacques ; Gottschalk, Julia ; Henderiks, Jorijntje ; Hughen, Konrad A. ; Jung, Simon ; Knutz, Paul ; Lebreiro, Susana ; Lund, David C. ; Lynch-Stieglitz, Jean ; Malaizé, Bruno ; Marchitto, Thomas M. ; Martínez-Méndez, Gema ; Mollenhauer, Gesine ; Naughton, Filipa ; Nave, Silvia ; Nürnberg, Dirk ; Oppo, Delia W. ; Peck, Vicky L. ; Peeters, Frank J. C. ; Penaud, Aurélie ; Portilho-Ramos, Rodrigo da Costa ; Repschläger, Janne ; Roberts, Jenny ; Ruhlemann, Carsten ; Salgueiro, Emilia ; Sanchez Goni, Maria Fernanda ; Schönfeld, Joachim ; Scussolini, Paolo ; Skinner, Luke C. ; Skonieczny, Charlotte ; Thornalley, David J. R. ; Toucanne, Samuel ; Van Rooij, David ; Vidal, Laurence ; Voelker, Antje H. L. ; Wary, Mélanie ; Weldeab, Syee ; Ziegler, Martin
    Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
  • Article
    Exceptional 20th century ocean circulation in the Northeast Atlantic
    (American Geophysical Union, 2020-04-17) Spooner, Peter T. ; Thornalley, David J. R. ; Oppo, Delia W. ; Fox, Alan D. ; Radionovskaya, Svetlana ; Rose, Neil L. ; Mallett, Robbie ; Cooper, Emma ; Roberts, J. Murray
    The North Atlantic subpolar gyre (SPG) connects tropical and high‐latitude waters, playing a leading role in deep‐water formation, propagation of Atlantic water into the Arctic, and as habitat for many ecosystems. Instrumental records spanning recent decades document significant decadal variability in SPG circulation, with associated hydrographic and ecological changes. Emerging longer‐term records provide circumstantial evidence that the North Atlantic also experienced centennial trends during the 20th century. Here, we use marine sediment records to show that there has been a long‐term change in SPG circulation during the industrial era, largely during the 20th century. Moreover, we show that the shift and late 20th century SPG configuration were unprecedented in the last 10,000 years. Recent SPG dynamics resulted in an expansion of subtropical ecosystems into new habitats and likely also altered the transport of heat to high latitudes.
  • Article
    Long-term variations in Iceland–Scotland overflow strength during the Holocene
    (Copernicus Publications on behalf of the European Geosciences Union, 2013-09-03) Thornalley, David J. R. ; Blaschek, Michael ; Davies, F. J. ; Praetorius, Summer K. ; Oppo, Delia W. ; McManus, Jerry F. ; Hall, Ian R. ; Kleiven, Helga F. ; Renssen, Hans ; McCave, I. Nick
    The overflow of deep water from the Nordic seas into the North Atlantic plays a critical role in global ocean circulation and climate. Approximately half of this overflow occurs via the Iceland–Scotland (I–S) overflow, yet the history of its strength throughout the Holocene (~ 0–11 700 yr ago, ka) is poorly constrained, with previous studies presenting apparently contradictory evidence regarding its long-term variability. Here, we provide a comprehensive reconstruction of I–S overflow strength throughout the Holocene using sediment grain size data from a depth transect of 13 cores from the Iceland Basin. Our data are consistent with the hypothesis that the main axis of the I–S overflow on the Iceland slope was shallower during the early Holocene, deepening to its present depth by ~ 7 ka. Our results also reveal weaker I–S overflow during the early and late Holocene, with maximum overflow strength occurring at ~ 7 ka, the time of a regional climate thermal maximum. Climate model simulations suggest a shoaling of deep convection in the Nordic seas during the early and late Holocene, consistent with our evidence for weaker I–S overflow during these intervals. Whereas the reduction in I–S overflow strength during the early Holocene likely resulted from melting remnant glacial ice sheets, the decline throughout the last 7000 yr was caused by an orbitally induced increase in the amount of Arctic sea ice entering the Nordic seas. Although the flux of Arctic sea ice to the Nordic seas is expected to decrease throughout the next century, model simulations predict that under high emissions scenarios, competing effects, such as warmer sea surface temperatures in the Nordic seas, will result in reduced deep convection, likely driving a weaker I–S overflow.
  • Article
    Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum
    (Nature Research, 2024-07-10) Wharton, Jack H. ; Renoult, Martin ; Gebbie, Geoffrey A. ; Keigwin, Lloyd D. ; Marchitto, Thomas M. ; Maslin, Mark A. ; Oppo, Delia W. ; Thornalley, David J. R.
    Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km—approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36–39° N) and Blake Outer Ridge (29–34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5,6,7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.