Marchitto Thomas M.

No Thumbnail Available
Last Name
Marchitto
First Name
Thomas M.
ORCID
0000-0003-2397-8768

Search Results

Now showing 1 - 7 of 7
  • Thesis
    Zinc and cadmium in benthic foraminifera as tracers of ocean paleochemistry
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2000-02) Marchitto, Thomas M.
    Benthic foraminiferal δ13C, Cd/Ca, and Ba/Ca are important tools for reconstructing nutrient distributions, and thus ocean circulation, on glacial-interglacial timescales. However, each tracer has its own "artifacts" that can complicate paleoceanographic interpretations. It is therefore advantageous to measure multiple nutrient proxies with the aim of separating the various complicating effects. Zn/Ca is introduced as an important aid toward this goal. Benthic (Hoeglundina elegans) Cd/Ca ratios from the Bahama Banks indicate that the North Atlantic subtropical gyre was greatly depleted in nutrients during the last glacial maximum (LGM). A high-resolution Cd/Ca record from 965 m water depth suggests that Glacial North Atlantic Intermediate Water formation was strong during the LGM, weakened during the deglaciation, and strengthened again during the Younger Dryas cold period. Comparison of Cd/Ca and δ13C data reveals apparent short-term changes in carbon isotopic air-sea signatures. Benthic foraminiferal Zn/Ca could be a sensitive paleoceanographic tracer because deep water masses have characteristic Zn concentrations that increase about ten-fold from the deep North Atlantic to the deep North Pacific. A "core top calibration" shows that Zn/Ca is controlled by bottom water dissolved Zn concentration and, like Cd/Ca and BalCa, by bottom water saturation state with respect to calcite Since Zn/Ca responds to a different range of saturation states than Cd/Ca, the two may be used together to evaluate changes in deep water carbonate ion (CO32-) concentration. Zn/Ca and Cd/Ca ratios in the benthic foraminifer Cibicidoides wuellerstorfi exhibit large fluctuations over the past 100,000 years in a deep (3851 m) eastern equatorial Pacific sediment core. The data imply that bottom water CO32- concentrations were lowest during glacial Marine Isotope Stage 4 and highest during the last deglaciation. LGM CO32- concentrations appear to have been within a few μmol kg-1 of modern values. Deep North Atlantic Cd/Ca ratios imply much higher nutrient concentrations during the LGM. Although such data have usually been explained by a northward penetration of Southern Ocean Water (SOW), it has been suggested that they could result from increased preformed nutrient levels in the high-latitude North Atlantic or by increased aging of lower North Atlantic Deep Water (NADW). Glacial Zn/Ca data, however, require a substantially increased mixing with SOW and thus a reduction in NADW formation. Large changes in carbon isotopic air-sea exchange are invoked to reconcile benthic δ13C and trace metal data.
  • Article
    Seawater cadmium in the Florida Straits over the Holocene and implications for Upper AMOC variability
    (American Geophysical Union, 2022-04-25) Valley, Shannon G. ; Lynch-Stieglitz, Jean ; Marchitto, Thomas M. ; Oppo, Delia W.
    Atlantic Meridional Overturning Circulation (AMOC) plays a central role in the global redistribution of heat and precipitation during both abrupt and longer-term climate shifts. Over the next century, AMOC is projected to weaken due to greenhouse gas warming, though projecting its future behavior is dependent on a better understanding of how AMOC changes are forced. Seeking to resolve an apparent contradiction of AMOC trends from paleorecords of the more recent past, we reconstruct seawater cadmium, a nutrient-like tracer, in the Florida Straits over the last ∼8,000 years, with emphasis on the last millennium. The gradual reduction in seawater Cd over the last 8,000 years could be due to a reduction in AMOC, consistent with cooling Northern Hemisphere temperatures and a southward shift of the Intertropical Convergence Zone. However, it is difficult to reconcile this finding with evidence for an increase in geostrophic flow through the Florida Straits over the same time period. We combine data from intermediate water depth sediment cores to extend this record into the Common Era at sufficient resolution to address the broad scale changes of this time period. There is a small decline in the Cd concentration in the Late Little Ice Age relative to the Medieval Climate Anomaly, but this change was much smaller than the changes observed over the Holocene and on the deglaciation. This suggests that any trend in the strength of AMOC over the last millennium must have been very subtle.
  • Article
    A secondary ionization mass spectrometry calibration of Cibicidoides pachyderma Mg/Ca with temperature
    (American Geophysical Union, 2008-04-04) Curry, William B. ; Marchitto, Thomas M.
    An evaluation of C. pachyderma Mg/Ca using a new suite of warm water multicores from the Florida Straits shows that the slope of Mg/Ca with temperature is shallower than previously thought. Using secondary ionization mass spectrometry, we have documented that the distribution of magnesium within the polished walls of foraminiferal tests is Gaussian, suggesting that the Mg/Ca in these samples is not affected by the addition of a secondary high-magnesium calcite in the walls. The Mg/Ca within a typical C. pachyderma test varies by about ±20% (1σ/μ · 100), and the variability increases slightly in tests with higher Mg/Ca. The regression of C. pachyderma Mg/Ca with temperature has a slope of 0.13 ± 0.05 mmol mol−1 per °C, indistinguishable from the slope observed in inductively coupled plasma–mass spectrometry measurements from a different subset of the same multicores, but about one half the slope of previously published calibrations. The largest differences between the calibrations comes at the warm water end of the regression, where previously published C. pachyderma Mg/Ca values from Little Bahama Bank are at least 3 mmol mol−1 higher than observed in these new cores. The reasons for this difference are not fully known but are most likely related to diagenesis at Little Bahama Bank.
  • Article
    Consistently dated Atlantic sediment cores over the last 40 thousand years
    (Nature Research, 2019-09-02) Waelbroeck, Claire ; Lougheed, Bryan C. ; Vazquez Riveiros, Natalia ; Missiaen, Lise ; Pedro, Joel ; Dokken, Trond ; Hajdas, Irka ; Wacker, Lukas ; Abbott, Peter ; Dumoulin, Jean-Pascal ; Thil, Francois ; Eynaud, Frederique ; Rossignol, Linda ; Fersi, Wiem ; Albuquerque, Ana Luiza ; Arz, Helge W. ; Austin, William E. N. ; Came, Rosemarie E. ; Carlson, Anders E. ; Collins, James A. ; Dennielou, Bernard ; Desprat, Stéphanie ; Dickson, Alex ; Elliot, Mary ; Farmer, Christa ; Giraudeau, Jacques ; Gottschalk, Julia ; Henderiks, Jorijntje ; Hughen, Konrad A. ; Jung, Simon ; Knutz, Paul ; Lebreiro, Susana ; Lund, David C. ; Lynch-Stieglitz, Jean ; Malaizé, Bruno ; Marchitto, Thomas M. ; Martínez-Méndez, Gema ; Mollenhauer, Gesine ; Naughton, Filipa ; Nave, Silvia ; Nürnberg, Dirk ; Oppo, Delia W. ; Peck, Vicky L. ; Peeters, Frank J. C. ; Penaud, Aurélie ; Portilho-Ramos, Rodrigo da Costa ; Repschläger, Janne ; Roberts, Jenny ; Ruhlemann, Carsten ; Salgueiro, Emilia ; Sanchez Goni, Maria Fernanda ; Schönfeld, Joachim ; Scussolini, Paolo ; Skinner, Luke C. ; Skonieczny, Charlotte ; Thornalley, David J. R. ; Toucanne, Samuel ; Van Rooij, David ; Vidal, Laurence ; Voelker, Antje H. L. ; Wary, Mélanie ; Weldeab, Syee ; Ziegler, Martin
    Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
  • Article
    Data constraints on glacial Atlantic Water mass geometry and properties
    (John Wiley & Sons, 2018-09-27) Oppo, Delia W. ; Gebbie, Geoffrey A. ; Huang, Kuo-Fang ; Curry, William B. ; Marchitto, Thomas M. ; Pietro, Kathryn R.
    The chemical composition of benthic foraminifera from marine sediment cores provides information on how glacial subsurface water properties differed from modern, but separating the influence of changes in the origin and end‐member properties of subsurface water from changes in flows and mixing is challenging. Spatial gaps in coverage of glacial data add to the uncertainty. Here we present new data from cores collected from the Demerara Rise in the western tropical North Atlantic, including cores from the modern tropical phosphate maximum at Antarctic Intermediate Water (AAIW) depths. The results suggest lower phosphate concentration and higher carbonate saturation state within the phosphate maximum than modern despite similar carbon isotope values, consistent with less accumulation of respired nutrients and carbon, and reduced air‐sea gas exchange in source waters to the region. An inversion of new and published glacial data confirms these inferences and further suggests that lower preformed nutrients in AAIW, and partial replacement of this still relatively high‐nutrient AAIW with nutrient‐depleted, carbonate‐rich waters sourced from the region of the modern‐day northern subtropics, also contributed to the observed changes. The results suggest that glacial preformed and remineralized phosphate were lower throughout the upper Atlantic, but deep phosphate concentration was higher. The inversion, which relies on the fidelity of the paleoceanographic data, suggests that the partial replacement of North Atlantic sourced deep water by Southern Ocean Water was largely responsible for the apparent deep North Atlantic phosphate increase, rather than greater remineralization.
  • Article
    Deglacial temperature and carbonate saturation state variability in the tropical Atlantic at Antarctic Intermediate Water Depths
    (Wiley, 2023-08-26) Oppo, Delia W. ; Lu, Wanyi ; Huang, Kuo-Fang ; Umling, Natalie E. ; Guo, Weifu ; Yu, Jimin ; Curry, William B. ; Marchitto, Thomas M. ; Wang, Shouyi
    The Atlantic Meridional Overturning Circulation (AMOC) is characterized by northward flow in the upper ocean and southward flow in the deep ocean. Understanding how the AMOC has changed in the past, and how such changes have affected surface climate and the distribution of ocean heat, carbon, and nutrients is important but challenging, as reconstructions of subsurface ocean properties are sometimes ambiguous. Here, we use the chemical composition of seafloor shells from a site in the western tropical Atlantic Ocean at ∼950 m water depth, within the northward-flowing limb of the AMOC, to reconstruct temperature, nutrients, and carbon content during the end of the last Ice Age, an interval when AMOC strength is believed to have varied. Our results support a link between AMOC strength and tropical Atlantic nutrient content, and further suggest that both rising atmospheric CO2 and AMOC variations influenced temperatures and carbon in the subsurface tropical Atlantic Ocean.
  • Article
    Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum
    (Nature Research, 2024-07-10) Wharton, Jack H. ; Renoult, Martin ; Gebbie, Geoffrey A. ; Keigwin, Lloyd D. ; Marchitto, Thomas M. ; Maslin, Mark A. ; Oppo, Delia W. ; Thornalley, David J. R.
    Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km—approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36–39° N) and Blake Outer Ridge (29–34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5,6,7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.